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PREFACE

Book references

The course and this script build upon two main references. The online book Forecasting:

principles and practice (Hyndman & Athanasopoulos, 2018) is available at https://

otexts.com/fpp2. It covers the basic principles and methods for forecasting time series

and provides several examples in the statistical programming language R. The second

reference of this course is the book Time Series Analysis and Its Applications: With R

Examples (Shumway & Stoffer, 2017) which is freely available online.1 The book covers

in detail several aspects of time series analysis, from the basic tools up to more advanced

topics. For students interested in deepening their knowledge about time-correlated data,

I highly recommend this book. Shumway and Stoffer (2017) also provide a very useful

appendix in which they cover more advanced statistical concepts.

At the beginning of each chapter in this script, I will indicate the relevant sections in the

two books.

Coding examples and exercises in R

Throughout this script, I will provide examples in the statistical programming language

R. While the examples and exercises that use R are simple, they require a basic knowl-

1A PDF-version of the book can be downloaded at https://www.stat.pitt.edu/stoffer/tsa4/

tsa4.pdf.

4

https://otexts.com/fpp2
https://otexts.com/fpp2
https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf
https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf


Introduction to Time Series Econometrics v0.1

edge of R. For an introduction to R and instruction for its setup I recommend Garrett

Grolemund’s online book Hands-On Programming with R.2 The appendix of the book

Time Series Analysis and Its Applications: With R Examples (Shumway & Stoffer, 2017)

also provides a quick introduction to R. When referring to variables and functions defined

in an R example, I will use the typewrite font. All coding examples reported in this

script are also available at the course’s GitHub repository.3

The examples and exercises in this script will mainly use the package “astsa,” a compan-

ion package for the book Time Series Analysis and Its Applications: With R Examples

(Shumway & Stoffer, 2017). The package can be installed in R by running the following

command:

install.package("astsa")

The package “astsa” contains many interesting time series datasets; a complete list can

be obtained by issuing the following command in R:

data(package="astsa")

To use one of the package’s datasets, it is enough to call the name of the dataset in R.

For example, the quarterly GDP data for the United States is called gdp:

library(astsa)

# assign the quarterly GDP data

gdp_data <- gdp

While you can directly work with the variable gdp, it is advisable to assign the dataset

to a new variable such that it appears in R’s working space.

In the context of time series analysis, R provides the very useful class ts(). For example,

all datasets in the package “astsa” are ts() objects. In contrast to a simple array of

numeric values, ts() allows to specify a time index. To create a ts() object we need

four main inputs: the data, a start and an end point, and the frequency. The frequency

defines the number of observations per unit of time. The start and end points are defined

2The book is available at https://rstudio-education.github.io/hopr/index.html.
3See https://github.com/dballinari/ITSE.
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as two-dimensional arrays where the first entry defines the time unit and the second the

number of samples into the time unit. Let’s have a look at a simple example:

# define an array of the cumulative sum of 60 random

# numbers

x <- cumsum(rnorm(n=60))

# create a time series: add time information

x_ts <- ts(data = x, start=c(2010, 1), end=c(2014, 12),

frequency=12)

In this example we first create an array of the cumulative sum of 60 random numbers (we

will learn more about the statistical properties of this series later in the script). Next,

we add the information that the first observation of the array is in January 2010, the last

one in December 2014, and that we have 12 observations each year. In other words, the

unit of time is years, and we have 12 observations (months) in each unit of time. A ts()

object comes with many useful features. For example, we can generate the plot of x ts

depicted in Figure 1 by simply running the following command:

# plot the time series

plot(x_ts , type="o")

# add grid lines for better readability

grid()

Figure 1: Plot of the ts() object x ts
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We can obtain the data for a specific time window using the function window(). For

example, we can get the observations of the time series x ts from July 2012 onwards by

running the following command:

# Get the data from the x_ts time series starting July 2012:

window(x_ts, start=c(2012, 7))

The functions start() and end() return the start and end points of a ts() object.

The function frequency() returns the number of observations per unit of time and the

function time() returns the time index of the ts() object. Throughout this script we

will explore other useful functions specifically designed for ts().4

4The examples and exercises in this script are done with R 4.1.0 and the “astsa” package 1.13 running
on Windows 10.
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CHAPTER

ONE

BASIC CONCEPTS

In the first chapter of this script, we will introduce basic characteristics of a time series.

Starting with the definition of a time series, we will analyse different examples of time

series datasets. In particular, the concepts of seasonality and trend are introduced. The

relevant chapters in the main references to this script are:

• Chapter 6.1, 6.3, and 8.1 in Forecasting: principles and practice (Hyndman &

Athanasopoulos, 2018),

• Chapter 1.1 in Time Series Analysis and Its Applications: With R Examples

(Shumway & Stoffer, 2017).

1.1 The nature of time series data

Broadly speaking, a time series represents a collection of data points observed at different

points in time. In its most simple form, a time series is a collection of values indexed in

time order. Most commonly, the time distance between two observations is constant, e.g.

one day or one month. However, this is not always the case. In Table 1.1 we depict two

examples of time series data. The upper panel presents the quarterly earnings per share of

8
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the company Johnson & Johnson. The data is indexed by the year and quarter. Earnings

are a typical example of evenly spaced time series, as the time between two subsequent

observations is constant. The lower panel presents the transactions recorded on the New

York Stock Exchange for the stock of Johnson & Johnson. The data is indexed by the

date, hour, minute, and second. The time between two subsequent transactions is not

constant. For example, there are 14 seconds between the first and second observation,

but only 10 seconds between the second and the third. In this introductory course we

focus exclusively on evenly spaced time series data.

Table 1.1: Examples of time series data

Example of an equally spaced time series: Quarterly earnings

Time index Value: quarterly earnings per share

1960 Q1 0.71$
1960 Q2 0.63$
1960 Q3 0.85$
1960 Q4 0.44$
1961 Q1 0.61$

...
...

Example of an unevenly spaced time series: Transactions of stocks

Time index Value: transaction price

05.01.2001 9:43:46 97.31$
05.01.2001 9:44:00 97.06$
05.01.2001 9:44:10 97.00$
05.01.2001 9:44:18 96.75$
05.01.2001 9:44:30 96.63$

...
...

Note: The table depicts two example of time series. The upper panel presents
the quarterly earnings per share of the company Johnson & Johnson (source:
“astse” R-package). The data is indexed by the year and quarter. Earnings are a
typical example of evenly spaced time series, as the time between two subsequent
observations is constant. The lower panel presents the transactions recorded on
the New York Stock Exchange for Johnson & Johnson’s stock (source: NYSE
TAQ database). The data is indexed by the date, hour, minute, and second. The
time between two subsequent transaction is not constant.

Time series data appears in many different research fields. In finance, for instance, each

day we observe the closing prices of stocks traded on the market and, as seen in the

previous example, each quarter a publicly traded company publishes its earnings. In

9
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economics, unemployment rates are reported each month. Meteorologists are interested

in the daily recorded temperatures and epidemiologist study the number of new virus

infections over a given time period.

Over the next pages, we will study the plots of some time series. The visual inspection of

these data will uncover some of the typical patterns found in time series data, and over

the remainder of this script, we will learn how to deal with them.

Figure 1.1 plots the time series of Johnson & Johnson’s quarterly earnings per share. The

plot can be generate with the following R commands:

library(astsa)

# get the earnings of Johnson and Johnson

jj_earnings <- jj

# plot the data

plot(jj_earnings , type=’o’, main=’’,

ylab=’Quarterly earnings per share’)

# add grid lines for better readability

grid()

Figure 1.1: Plot of the quarterly earnings per share of Johnson & Johnson

From the plot we observe a clear positive trend: over the years the earnings per share

increase considerably. Moreover, compared to the first three quarters, the earnings in the

last quarter are generally smaller. In time series analysis we refer to this pattern as a

10



Introduction to Time Series Econometrics v0.1

seasonality. Seasonal patterns appear in many different time series. For example, Figure

1.2 shows the weekly temperature measured in L.A. from 1970 to 1980. To obtain the

plot in R you can run the following code:

# get temperature data

temp_data <- tempr

# transform Fahrenheit to Celsius

temp_data <- (temp_data -32)*5/9

# plot the data

plot(temp_data , type=’l’, main=’’,

ylab=’Temperature in LA’)

# add grid lines for better readability

grid()

Figure 1.2: Plot of L.A. temperature

Note that the temperatures are provided in Fahrenheit and I convert them to Celsius

before plotting them. The time series of the temperatures has a clear seasonal pattern:

during the summer the weather is warmer and temperatures are around 30 degrees Cel-

sius, whereas in the winter weeks the temperature drops to roughly 15 degrees Celsius.

Over the short time window between 1970 and 1980 there is no clear trend in the tem-

peratures.

Figure 1.3 depicts the weekly returns of the S&P 500 stock market index from 2003 to
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2012. I create the plot by running the following code:

# get weekly returns of the SP 500 index

sp500_data <- sp500w

# note that this data comes in the form of an "xts"

# object , which is a different

# class used in R to handle time series data;

# we transform the xts object to a ts object for

# consistency with the other data

sp500_data <- ts(sp500_data , start=c(2003,1),

frequency= 52)

# plot the data

plot(sp500_data , type=’l’, main=’’, ylab=’Weekly returns ’)

# add grid lines for better readability

grid()

Figure 1.3: Plot of weekly S&P 500 returns

The weekly return series provided by the “astsa” package comes in the form of an xts

object, which is an extension of the more simple ts data-type used throughout this script.

While you can directly plot xts with the command plot(), for consistency I transform

the weekly returns to a ts object. From a visual inspection, there is no apparent trend

nor seasonal pattern in the weekly returns. We observe however that around the financial

crisis of 2008-2009 the series fluctuates more compared to the other years. This pattern

12
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is known as heterogeneous or time-varying volatility and there are specific approaches to

deal with it. Being more advanced topics that require first a basic understanding of time

series analysis, I will not cover these techniques in this script.

Analyzing the data graphically is a very important part of time series econometrics. It

allows to draw some first conclusions about the relevant properties of the data, such as

seasonal patterns or trends. In Section 1.3 of this chapter I will use the plots of time

series to guide my choice of the appropriate modelling approach. In Chapter 2 I will

introduce useful graphical representations of time series data.

1.2 Notation

Before turning our attention to the statistical properties and approaches used in time

series analysis, it is necessary to introduce some basic notation. In statistical terms, a

time series is a collection of time ordered random variables:

. . . , Yt−2, Yt−1, Yt, Yt+1, Yt+2 . . . (1.1)

where the subscript indicates the time at which the random variable realizes. For example,

when analyzing the quarterly earnings of Johnson & Johnson, Yt represents the (random)

earnings and its index t indicates the year and quarter in which the earnings are published.

Each of these time-ordered random variables has a cumulative distribution function Ft,

which is not necessarily constant over time.

Definition 1.1: Time series

A time series in discrete time is a sequence of time-ordered real-valued random

variables {Yt : t ∈ Z}.

Often, it will be useful to define how Yt came about. For example, we could assume that

13
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the quarterly earnings are generated by:

Yt = Yt−1 + εt (1.2)

where εt is a standard normally distributed random variable.1 Equation (1.2) can be read

as follows. Let’s assume that t is the first quarter in 1970. Then, the above equation

tells us that the earnings of the first quarter in 1970 are equal to the earnings of the last

quarter in 1969 (i.e. Yt−1) plus some random term which on average is equal zero. We

will explore later in this script whether this is an appropriate model for the quarterly

earnings of Johnson & Johnson.

If we would like to know how the earnings changed from quarter to quarter, we can take

the first difference of Equation (1.2):

∆Yt = Yt − Yt−1 = Yt−1 + εt − Yt−1 = εt. (1.3)

The first difference is indicated by ∆. In some instances, we might want to take the first

difference more than once. If the first difference of Yt is taken twice, for instance, we

indicate this by ∆∆Yt or ∆2Yt. In other situations, it might be necessary to take the

differences between Yt and Yt−s where s > 1. This type of differences are called seasonal

difference and the notation is ∆sYt = Yt − Yt−s.

Definition 1.2: Differencing

First differences in a time series are defined as:

∆Yt = Yt − Yt−1 and for k > 1 ∆kYt = ∆k−1∆Yt.

Seasonal differences are defined as:

∆sYt = Yt − Yt−s.

1Recall that a standard normally distributed random variable has zero mean and unit standard
deviation.

14



Introduction to Time Series Econometrics v0.1

1.3 Decomposition of a time series: trend and sea-

sonality

In the first part of this chapter, I presented different examples of time series. A visual

inspection thereof highlighted some important patterns that are found in many time

series. In particular, a time series may have one or more of the following properties:

• Seasonal pattern: the time series is affected by a pattern reoccurring at fixed and

known frequency. Seasonal factors can be related, for example, to the time, the

day, the week, the month, or the season.

• Trend: represents a long-term increase or decrease in the time series. It does not

have to be linear and is allowed to change direction over time.

• Cycle: the data exhibit rises and falls that are not of a fixed frequency. For example,

business cycles do not have fixed frequency, and are therefore not a seasonality.

When analyzing a time series, we usually consider trend and cycles jointly. In other

words, we distinguish only between seasonal patterns and trend-cycle patterns. In more

detail, a time series Yt is usually assumed to have the following structure:

Yt = Tt + St +Xt (1.4)

where Tt is the trend-cycle component, St is the seasonal component, and Xt is a random

component (often called the remainder term). It is common to treat Tt and St as deter-

ministic functions, i.e. once we know their functional form we can perfectly predict them.

In contrast, Xt is a random variable that is not perfectly predictable. For example, recall

the example of Johnson & Johnson’s quarterly earnings. The visual inspection of this

time series unveiled a positive trend (Tt) and a seasonal pattern (St). The seasonal and

the random remainder components are on average equal to zero. In general, in time series

econometrics the goal is to appropriately model each of the three components.

15
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Example 1.1: Time series components

To get a better intuition of the above decomposition of a time series, let’s have a look

at an artificial example. Let the time series Yt have the linear trend Tt = 10 + 0.1 · t,

and a seasonal pattern whose first four observations are:

S1 = −1, S2 = 0, S3 = 1, S4 = 0

and repeat every fourth observations, i.e. St = St+4. In other words, S5 will equal

-1, S6 will equal 0, etc. For simplicity, let the random component be a standard

normally distributed random variable. Figure 1.4 plots the time series Yt and its three

components. The figure shows in the top panel, the time series Yt which exhibits a

positive time trend and a seasonal pattern. The second and third panel of Figure

1.4 show these two components: a linear positive trend and a seasonal pattern. The

bottom panel of the figure plots the random component Xt. You can reproduce this

example by running the following R code:

# Generate the example of a time series decomposition

# To reproduce the results , set the seed

set.seed(123)

# Define the number of observations in the time series

n <- 100

# Create the trend component

trend <- 10 + 0.1*1:n

# Create the seasonal component:

season <- rep(c(-1, 0, 1, 0), n/4)

# Generate the random component

x <- rnorm(n, mean = 0, sd = 1)

# Define the time series

y <- trend + season + x

Note that in R we produce the seasonal component by repeating the vector of the

seasonal pattern. The final time series y is obtained by simply summing up the

components. We can then convert the vectors of y, trend, season, and x to ts

16
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objects and plot the results:

# Lets convert all components into ts-ojects and merge them

y <- ts(y, start = c(1, 1), frequency = 4)

trend <- ts(trend , start = c(1, 1), frequency = 4)

season <- ts(season , start = c(1, 1), frequency = 4)

x <- ts(x, start = c(1, 1), frequency = 4)

# combine the time series y and its components

# in one object:

ts_components <- ts.union(y, trend , season , x)

# plot the time series and its components

plot(ts_components , type ="l", main="")

grid()

Figure 1.4: Plot of the time series Yt and its components
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An alternative specification of the decomposition of a time series is the following:

Yt = Tt · St ·Xt. (1.5)

This decomposition is usually referred to as multiplicative decomposition, whereas Equa-

tion 1.4 is referred to as additive decomposition. A simple guideline to choose which

decomposition is most appropriate is as follows:

• Additive decomposition: the seasonal variation or the fluctuation around the trend-

cycle component do not vary with the level of the time series.

• Multiplicative decomposition: the seasonal variation and/or the fluctuation around

the time-cycle are proportional to the level of the time series.

While there are techniques to directly work with the multiplicative decomposition, in this

course we will transform these time series by taking the natural logarithm. In fact, if we

take the natural logarithm on both sides of Equation (1.5) we obtain:

log(Yt) = log(Tt · St ·Xt)

= log(Tt) + log(St) + log(Xt) (1.6)

and the transformed time series log(Yt) has an additive decomposition. In other words,

when we suspect that the time series Yt has a multiplicative decomposition, we transform

it and work with log(Yt).

18
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Definition 1.3: Decomposition of a time series

A time series Yt has an additive decomposition when it can be defined as:

Yt = Tt + St +Xt

with
1

T

T∑
t=1

St = 0 and
1

T

T∑
t=1

Xt = 0

where Tt is a deterministic trend-cycle component, St is a deterministic seasonal

component and Xt is a random component. The time series has instead a multi-

plicative decomposition, if the seasonal variation and/or the fluctuation around the

time-cycle are proportional to the level of the time series:

Yt = Tt · St ·Xt

with

(
T∏
t=1

St

) 1
T

= 1 and

(
T∏
t=1

Xt

) 1
T

= 1

1.4 The goal of time series analysis

The general goal of time series analysis is to make inference about a time series Yt. For

example, we might be interested in forecasting next year’s sales of Amazon. Or, we would

like to quantify the impact of seasonalities of the earnings of Johnson & Johnson. All

these tasks involve the definition and estimation of a probabilistic model for the time

series.

The analysis of time series data proceeds roughly as follows. First, we visually inspect

the data. We try to identify the properties of the time series to guide our choice of an

appropriate model. Second, we define a model for the trend and seasonal component.

Third, we estimate the trend and the seasonal component and determine the random

remainder component: X̂t = Yt − T̂t − Ŝt, where the “hat” highlights the fact that we

have estimated these components. Fourth, we analyze the remainder term. In some cases,

X̂t is an independent and identically distributed random variable (i.i.d.), in which case
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we cannot predict its future values. If X̂t is instead dependent from its past values, we

can define a model that describes the dynamics of the remainder term as a function of

X̂t−1, X̂t−2, . . . Finally, based on the estimated models for each of the three components

we can forecast the original time series Yt.

Forecasting is a very common task in time series econometrics. In general, it involves

estimating the value we expect a time series to have over the next time period. Let’s

assume that we observe a time series up to time point T (e.g. the last quarter of 2021).

Based on the history of the time series, we want to predict the value of the time series in

T + 1 (e.g the first quarter of 2022). Throughout this script, I will denote this forecast as

ŶT+1|T . The “hat” indicates that this is an estimated quantity, and the subscript can be

read as “the forecast for T+1 made at time point T .” I will explain in more detail how we

can compute this forecast and what it exactly represents later in this script. In general,

forecasting a time series involves predicting its trend component, seasonal component,

and the remainder component.

We will see some of the most common models for the remainder term in Chapter 3.

This models relay on the assumption that Xt has some specific statistical properties (e.g.

stationarity). We will get familiar with these properties in Chapter 2. For now, it is

important to remember, that it is crucial to appropriately model the trend and seasonal

component of a time series to ensure that Xt has the required statistical properties.

1.5 Modelling the trend and seasonal components of

a time series

1.5.1 Defining a model

For a given time series Yt with an additive decomposition, our goal is to model its com-

ponents such that we can, for example, forecast its future values. In the following para-

graphs, we will learn how to deal with the trend-cycle and the seasonal components. In

the remaining chapters of this script, we will instead learn how to model and forecast the
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remainder component.

A simple approach to deal with the components, is to make an assumption regarding

their form. A common assumption is that the trend-cycle component is a n-order poly-

nomial.

Definition 1.4: Polynomial

A n-order polynomial is a function f(z) of the form:

f(z) = anz
n + an−1z

n−1 + · · ·+ a2z
2 + a1z

1 + a0

where an, . . . , a0 are scalar parameters.

For example, a linear trend can be approximated by a first-order polynomial, i.e. we

assume that Tt = a0 + a1 · t. For a time series with a quadratic trend, we might want to

consider a second-order polynomial: Tt = a0 + a1 · t+ a2 · t2.

For the seasonality, we usually make an assumption about the frequency of the seasonal

pattern. The seasonal component is on average equal to zero, i.e. T−1
∑T

t=1 St = 0.

For example, if we have a time series of quarterly earnings, we might assume that the

seasonality has a quarterly frequency and define the seasonal component as:

St =



s1 for t = 1, 5, 9, . . .

s2 for t = 2, 6, 10, . . .

s3 for t = 3, 7, 11, . . .

s4 for t = 4, 8, 12, . . .

where (s1 + s2 + s3 + s4)/4 = 0.

Example 1.2: Time series components of quarterly earnings

Consider again the quarterly earnings of Johnson & Johnson in Figure 1.1. First,

notice that the seasonal variation is proportional to the level of the time series. In

other words, the seasonal fluctuations around the year 1980 are stronger than those in
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1960. This is a clear indication that the time series has a multiplicative decomposition

and we therefore take its natural logarithm. Figure 1.5 depicts the log earnings.

Figure 1.5: Plot of the quarterly log earnings per share of Johnson & Johnson

From a graphical analysis of the time series, we can assume that there is a linear

trend and a seasonal pattern with a quarterly frequency. We can therefore write the

time series of log earnings Yt as:

Yt = a0 + a1 · t+ St +Xt

= a0 + a1 · t+ St−4 +Xt

where the second line of the above equation shows that the seasonality has a quarterly

frequency, i.e. every fourth observation has the same seasonal component. Alterna-

tively, we could write the time series as:

Yt = a0 + a1 · t+ s1 · 1(t=1,5,... ) + s2 · 1(t=2,6,... ) + s3 · 1(t=3,7,... ) + s4 · 1(t=4,8,... ) +Xt

where 1(t=1,5,... ) is an indicator function that is equal to 1 in period t = 1, 5, 9, . . . , and

zero otherwise. We now have specified a model for the trend and the seasonal com-

ponents of the time series. These components depend however from the parameters

a0, a1, s1, s2, s3, s4 which we have to estimate.
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Definition 1.5: Indicator function

An indicator function is a function that equals to one whenever a condition is met,

and zero otherwise. Let A be a condition. We define the indicator function as:

1(A) =


1, if A

0, else

Example 1.3: Time series components of weekly returns

Recall the plot of weekly S&P 500 returns presented in Figure 1.3. We concluded

that the returns have neither a trend nor seasonal component. Let Yt be the time

series of weekly returns. In this case we would define the time series as:

Yt = a0 +Xt

where a0 is the mean of the time series.

In summary, in this course we will define a time series and its components as follows.

Definition 1.6: Parametric decomposition of a time series

Yt = a0 + a1t+ a2t
2 + · · ·+ an−1t

n−1 + ant
n + St +Xt

with St = St−s

1

s

s∑
t=1

St = 0

1

T

T∑
t=1

Xt = 0

where n controls the flexibility of the trend and s the periodicity of the seasonal

component. The parameters n and s are chosen based on a graphical analysis of

the time series. The remaining parameters are instead estimated.
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Note that this definition is specific to this course. In practice, there exist other definitions

of the trend and seasonal components. For example, the seasonal component is often

defined as a sine wave St = c · sin(ωt + ρ) where c, ω, ρ are parameters to be estimated.

For the sake of simplicity, in this course we will only use Definition 1.6.

1.5.2 Estimating the components

Once we have made an assumption about the trend and seasonal components, we need

to estimate the relevant parameters. The most straightforward approach is to estimate

the parameters with ordinary least squares (OLS). The following example illustrates how

this can be done.

Example 1.4: Estimation of the components of the earnings time series

For the quarterly log earnings time series we defined the following specification of the

trend and seasonality components:

Yt = a0 + a1 · t+ s1 · 1(t=1,5,... ) + s2 · 1(t=2,6,... ) + s3 · 1(t=3,7,... ) + s4 · 1(t=4,8,... ) +Xt

(1.7)

We can rewrite this equation as:

Yt = a1 · t+ β1 · 1(t=1,5,... ) + β2 · 1(t=2,6,... ) + β3 · 1(t=3,7,... ) + β4 · 1(t=4,8,... ) + εt

(1.8)

where β1 = s1 + a0

β2 = s2 + a0

β3 = s3 + a0

β4 = s4 + a0

εt = Xt

The reason for rewriting the equation, is that when we estimate the parameters with

OLS we cannot include an intercept and all four seasonality components, since this
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would lead to perfect multicollinearity. It can be easily shown that the Equation 1.7

and Equation 1.8 are equivalent (see Exercise 1.1). Since the seasonal components

are on average equal to zero, i.e. (s1 + s2 + s3 + s4)/4 = 0, we have that:

(β1 + β2 + β3 + β4)/4 = (s1 + a0 + s2 + a0 + s3 + a0 + s4 + a0)/4

= (s1 + s2 + s3 + s4)/4 + a0

= 0 + a0 = a0.

From the estimates of the regression defined in Equation (1.8) we can therefore infer

the parameters of the trend and seasonal component: â0 = (β̂1 + β̂2 + β̂3 + β̂4)/4,

ŝ1 = β̂1 − â0, . . . , ŝ4 = β̂4 − â0.

In R we have to first define a data frame with the relevant variables: the log quarterly

earnings, dummy variables for each quarter and a time index:

# Create a data frame that allows us to estimate trend and

# seasonality:

trendseason_df <-

data.frame(earn=jj_log_earnings ,

s1= rep(c(1,0,0,0), length(jj_log_earnings )/4),

s2= rep(c(0,1,0,0), length(jj_log_earnings )/4),

s3= rep(c(0,0,1,0), length(jj_log_earnings )/4),

s4= rep(c(0,0,0,1), length(jj_log_earnings )/4),

tt = time(jj_log_earnings ))

The first rows of this data frame look as follows:

>head(trendseason_df)

earn s1 s2 s3 s4 tt

1 -0.3424903 1 0 0 0 1960.00

2 -0.4620355 0 1 0 0 1960.25

3 -0.1625189 0 0 1 0 1960.50

4 -0.8209806 0 0 0 1 1960.75

5 -0.4942963 1 0 0 0 1961.00

6 -0.3710637 0 1 0 0 1961.25
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We can then run the regression and transform the estimates to obtain the parameters

of interest:

# Estimate the parameters: run without intercept

trendseason_reg <- lm(earn ~ tt + s1 + s2 + s3 + s4 -1,

data = trendseason_df)

# Define a0:

a0 <- mean(coef(trendseason_reg)[c("s1", "s2", "s3", "s4")])

# Get a1:

a1 <- coef(trendseason_reg)["tt"]

# Define the seasonal components:

season_components <-

coef(trendseason_reg)[c("s1", "s2", "s3", "s4")] - a0

# Get the residual component:

x <- jj_log_earnings - fitted(trendseason_reg)

We obtain â0 = −328.29, â1 = 0.17, ŝ1 = 0.011, ŝ2 = 0.039, ŝ3 = 0.109 and

ŝ4 = −0.159.
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1.5.3 Removing trend and seasonal components

An alternative to estimating the trend and seasonal components is to remove them. By

appropriately differencing a time series Yt we can remove both the trend and seasonal

components.

Example 1.5: Differencing a time series with linear trend

Let Yt be a time series defined as:

Yt = a0 + a1 · t+Xt.

If we take the first difference of Yt we obtain:

∆Yt = a0 + a1 · t+Xt − a0 − a1 · (t− 1)−Xt−1

= a1 +Xt −Xt−1

= a1 + ∆Xt.

The time series ∆Yt has neither a trend nor a seasonal component. We can estimate

a1 as the average of ∆Yt. Appropriate models for the remainder ∆Xt are discussed

in Chapter 3.

When the time series has a quadratic trend, we have to difference twice.

Example 1.6: Differencing a time series with quadratic trend

Let Yt be a time series defined as:

Yt = a0 + a1 · t+ a2 · t2 +Xt.
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If we take the first difference of Yt we obtain:

∆Yt = a0 + a1 · t+ a2 · t2 +Xt − a0 − a1 · (t− 1)− a2 · (t− 1)2 −Xt−1

= a1 + a2 · t2 − a2 · t2 + 2 · a2 · t− a2 +Xt −Xt−1

= a1 − a2 + 2 · a2 · t+ ∆Xt.

The time series ∆Yt has still a linear trend. We therefore take the difference of ∆Yt

and obtain:

∆∆Yt = a1 − a2 + 2 · a2 · t+ ∆Xt − a1 + a2 − 2 · a2 · (t− 1)−∆Xt−1

= 2 · a2 + ∆∆Xt

= 2 · a2 + ∆2Xt.

The time series ∆∆Yt = ∆2Yt has no trend. We can estimate 2 · a2 as the average of

∆2Yt and define an appropriate model for ∆2Xt.

If we suspect that the time series has a seasonal component, we take seasonal differ-

ences.

Example 1.7: Differencing a time series with a seasonal component

Let Yt be a time series defined as:

Yt = a0 + St +Xt

with St = St−4.

The seasonal pattern repeats every fourth observation. We can therefore remove it
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by taking the seasonal difference (recall Definition 1.2):

∆4Yt = Yt − Yt−4

= a0 + St +Xt − a0 − St−4 −Xt−4

= a0 + St−4 +Xt − a0 − St−4 −Xt−4

= Xt −Xt−4

= ∆4Xt

where in the third step I use the fact that St = St−4. The time series ∆4Yt has neither

a seasonal nor a trend component.

When a time series has both a seasonal pattern and a time trend, we have to apply both

first and seasonal differences. In case of only one seasonal component and a linear trend,

a simple seasonal difference will remove both. If, for instance, the trend is quadratic, we

have to apply both first and seasonal differences.

Example 1.8: Differencing a time series with a quadratic trend and a

seasonal component

Let Yt be a time series defined as:

Yt = a0 + a1 · t+ a2 · t2 + St +Xt

with St = St−4.

The seasonal pattern repeats every fourth observation and the time trend is quadratic.
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We can first remove the seasonal component by taking the seasonal difference:

∆4Yt = Yt − Yt−4

= a0 + a1 · t+ a2 · t2 + St +Xt − a0 − a1 · (t− 4)− a2 · (t− 4)2 − St−4 −Xt−4

= a0 + a1 · t+ a2 · t2 + St−4 +Xt − a0 − a1 · (t− 4)− a2 · (t− 4)2 − St−4 −Xt−4

= 4 · a1 + a2 · t2 − a2 · (t2 − 8 · t+ 16) +Xt −Xt−4

= 4 · a1 + 8 · a2 · t− 16 · a2 + ∆4Xt

where in the third step I used the fact that St = St−4. The time series ∆4Yt has no

seasonal component but still a linear time trend. We therefore take the first difference

of ∆4Yt:

∆∆4Yt = ∆4Yt −∆4Yt−1

= 4 · a1 + 8 · a2 · t− 16 · a2 + ∆4Xt − 4 · a1 − 8 · a2 · (t− 1) + 16 · a2 −∆4Xt−1

= 8 · a2 + ∆∆4Xt.

We can estimate 8 · a2 with the mean of ∆∆4Yt and find an appropriate model for

∆∆4Xt.

To summarize, we can remove trends by taking simple differences and seasonal compo-

nents by taking seasonal differences. The number of differences that we have to take to

remove seasonal and trend components depends on the form of these components. For the

trend component, if we assume the trend to be best represented by a n-order polynomial,

we will have to take n differences of the original time series. Note that, theoretically we

can also have multiple seasonal patterns with different frequencies, in which case we have

to take more than one seasonal difference.
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1.5.4 Difference between estimating and removing the compo-

nents

In this section I introduced two approaches to deal with trend and seasonal components,

and you might wonder which one is best or should generally be used. The idea behind

both procedures, is to deal with trend and seasonalities such that we can model the

remainder component. As we will see in Chapter 4, we can use both approaches to

produce forecasts. In one case, we use the estimated models to produce forecasts of

the three time series components and aggregate them. In the other case, we produce

forecasts only for the remainder component and then revert the difference operators to

obtain predictions for the original time series.

We have to estimate the trend and seasonal components in case we are interested in

analyzing the dynamics of the time series, and not just producing forecasts. For example,

if we want to quantify the strength of the trend or the magnitude of the seasonalities, we

have to estimate the components as we have seen in Section 1.5.2. Moreover, we might be

interested in studying also the dynamics of the remainder term Xt. When removing the

trend and seasonal components by taking differences, we are also modifying the remainder

term. In Example 1.5.3, for instance, after taking the first difference we are left with a

remainder component of the form ∆Xt, which will not have the same probabilistic model

as Xt. In summary, if the final goal is forecasting then it does not matter which approach

you choose, but if you are interested in studying the dynamics of the time series it is best

to model all components.

1.5.5 Alternative approaches to deal with trend and seasonal

components

In this section I presented two basic approaches that can be used to deal with trend and

seasonal components. In practice there exist many other procedures. A popular approach

to estimate trend and seasonal components is, for example, the Seasonal and Trend

decomposition using Loess (STL). This methodology allows for very flexible definitions
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of the trend and seasonal components and can be used in R through the function stl().

You can find an overview of different approaches in Chapter 6 of Forecasting: principles

and practice (Hyndman & Athanasopoulos, 2018). However, you do not need to know

these methods for this course.

1.6 Summary

Throughout this script, I will summarize the steps involved in the analysis of time series

data in a diagram. Figure 1.6 shows the diagram with the steps we have discussed in

Chapter 1. Note that the diagram summarizes only the approaches and models that we

are learning in this course. The tools and techniques available to analyse time series data

go well beyond what we are covering in this script.

Time series Yt

Plot the time series data (Section 1.5):
Trend: linear, quadratic, ... (determine n)

Seasonality: weekly, quarterly, ... (determine s)

Estimate the trend and seasonal
components (Section 1.5.2)

Remove the trend and seasonal
components (Section 1.5.3)

Figure 1.6: Diagram of the time series analysis procedure

32



Introduction to Time Series Econometrics v0.1

1.7 Exercises

Exercise 1.1. Consider a time series Yt defined as:

Yt = a0 + a1 · t+ s1 · 1(t=1,5,... ) + s2 · 1(t=2,6,... ) + s3 · 1(t=3,7,... ) + s4 · 1(t=4,8,... ) +Xt.

One might estimate the trend and seasonal components by running the following regres-

sion:

Yt = a1 · t+ β1 · 1(t=1,5,... ) + β2 · 1(t=2,6,... ) + β3 · 1(t=3,7,... ) + β4 · 1(t=4,8,... ) + εt

where β1 = s1 + a0

β2 = s2 + a0

β3 = s3 + a0

β4 = s4 + a0

εt = Xt

Show that the two equations are equivalent.
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Exercise 1.2. Consider a time series Yt defined as:

Yt = a0 + a1 · t+ s1 · 1(t=1,3,... ) + s2 · 1(t=2,4,... ) +Xt.

One might estimate the trend and seasonal components by running the following regres-

sion:

Yt = α + a1 · t+ β1 · 1(t=1,3,... ) + εt

where α = a0 + s2

β1 = s1 − s2

εt = Xt

(i) Show that the two equations are equivalent.

(ii) Given the estimates α̂ and β̂1, determine a0, s1, s2.

Exercise 1.3. Consider the following time series:

Yt = a0 · at1 ·Xt

where a0 > 0 and a1 > 0. After applying the necessary transformations, remove the trend

from the time series.
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Exercise 1.4. Consider the following time series:

Yt = a0 + St + S̃t +Xt

where St = St−2 and S̃t = S̃t−4.

The time series has two different seasonal components: St repeats every two time periods

and S̃t repeats every four time periods. Apply the necessary transformations to remove

the two seasonal components.

Exercise 1.5. Analyse in R the time series of monthly pneumonia and influenza deaths

in the U.S. (dataset flu in the package “astsa”). In particular:

(i) Plot the time series data.

(ii) Based on the plot, define an appropriate model for the trend and seasonal components.

(iii) Estimate the parameters of the trend and seasonal components using OLS.

(iv) Plot the trend, seasonal and remainder components.
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CHAPTER

TWO

THE STATISTICS OF TIME SERIES

In the second chapter of this script, we will introduce statistical concepts of time series

data. We start by reviewing basic statistic concepts, such as the expected value, the

covariance, and the conditional distribution of a random variable. Next, we learn how

these basic concepts are applied to time dependent data. Finally, we will introduce the

concept of stationarity of a time series. The relevant chapters in the main references to

this script are:

• Chapter 2.8, 2.9 and 8.1 in Forecasting: principles and practice (Hyndman &

Athanasopoulos, 2018),

• Chapter 1.3, 1.4 and 1.5 in Time Series Analysis and Its Applications: With R

Examples (Shumway & Stoffer, 2017).
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2.1 Review of basic statistical concepts

2.1.1 Densities and distributions

A random variable X that takes finite or countable infinite many values is said to be a

discrete random variable. The probability distribution of a discrete random variable is

denoted as P[X = xk] and defines the probability that the random variable takes the

value xk. The probabilities for each possible value that X can take sum to unity:

K∑
k=1

P[X = xk] = 1

where K could be∞.1 The probability that the random variable X is smaller or equal to

the value a is obtained by summing all probabilities P[X = xk] for which xk ≤ a:

P[X ≤ a] =
∑
xk≤a

P[X = xk].

In this course we focus on continuous random variables, i.e. a random variable X that

takes uncountable many values. We will therefore review the basic statistical concepts

only for continuous random variables. The probability of a continuous random variable

is often described by its density function fX(x):

P[a ≤ X ≤ b] =

∫ b

a

fX(x)dx.

The integral of the density function over all possible values that X can take equals

one: ∫ ∞
−∞

fX(x)dx = 1.

The distribution function of X is then defined as:

P[X ≤ a] =

∫ a

−∞
fX(x)dx.

1An example of a discrete random variable which can take infinite many values is the Poisson distri-
bution.
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The joint probability of two continuous random variables X and Y is described by their

joint density function fX,Y (x, y). In particular, we define the joint distribution function

as:

FX,Y (a, b) = P[X ≤ a, Y ≤ b] =

∫ a

−∞

∫ b

−∞
fX,Y (x, y)dydx.

If we have a joint distribution function but are interested only in the probability law of

X, we can compute the marginal density function:

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy.

In other words, fX(x) describes the probability of X without accounting for the values

that Y may take. If we are instead interested in the probability of the random variable X

knowing that the random variable Y takes a specific value, we can compute the conditional

density function:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

The integral of the conditional density function over all possible values that X can take

equals one:

∫ ∞
−∞

fX|Y (x|y)dx =

∫ ∞
−∞

fX,Y (x, y)

fX(x)
dx

=
1

fX(x)

∫ ∞
−∞

fX,Y (x, y)dx

=
1

fX(x)
fX(x) = 1.

The conditional probability is then defined as:

P[X ≤ a|Y = b] =

∫ a

−∞
fX|Y (x|b)dx

and tells us the probability that the random variable X is smaller than a, knowing that

the random variable Y takes the value b.
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2.1.2 Moments of random variables

The expected value of a function g(·) of a random variable X is defined as:

E[g(X)] =

∫ ∞
−∞

g(x) · fX(x)dx.

Similarly, we can defined the expected value of a function of more than one random

variable:

E[g(X, Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y) · fX,Y (x, y)dydx.

Often we are interested in the first moment of a random variable, that is the expected

value of X:

E[X] =

∫ ∞
−∞

x · fX(x)dx.

The variance of a continuous random variable X is defined as:

Var[X] =E
[
(X − E[X])2

]
=

∫ ∞
−∞

(x− E[X])2 · fX(x)dx.

Recall that we can write the variance also as Var[X] = E[X2] − E[X]2, which is often

easier to calculate.

The covariance between two continuous random variables X and Y is defined as:

Cov[X, Y ] =E [(X − E[X])(Y − E[Y ])]

=

∫ ∞
−∞

(x− E[X]) (y − E[Y ]) · fX,Y (x, y)dydx.

Recall that we can write the covariance also as Cov[X, Y ] = E[X ·Y ]−E[X] ·E[Y ], which

is often easier to calculate. In particular, notice that Cov[X,X] = E[X2] − E[X]2 =

Var[X].
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The correlation between two random variables X and Y is defined as:

Corr[X, Y ] =
Cov[X, Y ]√
Var[X]Var[Y ]

.

Recall that the correlation is bounded between −1 and +1, and when the correlation

equals zero we say that X and Y are uncorrelated.

Next, we briefly review the moments of simple linear functions of random variables.

Consider the linear function g(X, Y ) = a · X + b · Y where X and Y are two random

variables with joint density function fX,Y (x, y). The expected value of this function of

random variables is:

E[a ·X + b · Y ] =

∫ ∞
−∞

∫ ∞
−∞

(a · x+ b · y)fX,Y (x, y)dydx

=

∫ ∞
−∞

∫ ∞
−∞

a · x · fX,Y (x, y)dydx+

∫ ∞
−∞

∫ ∞
−∞

b · y · fX,Y (x, y)dydx

=

∫ ∞
−∞

a · x ·
∫ ∞
−∞

fX,Y (x, y)dydx+

∫ ∞
−∞

b · y ·
∫ ∞
−∞

fX,Y (x, y)dxdy

=a ·
∫ ∞
−∞

x · fX(x)dx+ b ·
∫ ∞
−∞

y · fY (y)dy

=a · E[X] + b · E[Y ]

where from the second to the third line I take out from the inner integral the parts that

do not depended from the integrating variable, and from the third to the fourth line I

replace the integral of the joint density with the respective marginal density. The variance

is:

Var[a ·X + b · Y ] =E[(a ·X + b · Y )2]− E[a ·X + b · Y ]2

=E[a2 ·X2 + 2 · ab ·XY + b2 · Y 2]−
(
a · E[X] + b · E[Y ]

)2
=a2 · E[X2] + 2 · ab · E[XY ] + b2 · E[Y 2]

−
(
a2 · E[X]2 + 2 · ab · E[X]E[Y ] + b2 · E[Y ]2

)
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=a2 ·
(

E[X2]− E[X]2
)

+ b2 ·
(

E[Y 2]− E[Y ]2
)

+ 2 · ab ·
(

E[XY ]− E[X]E[Y ]
)

=a2 · Var[X] + b2 · Var[Y ] + 2 · ab · Cov[X, Y ].

From the first to the second line I used the result for the expected value we derived above,

and in the last step I used the alternative definitions of the variance and covariance. This

result is very helpful and facilitates the computations in many situations. For example,

if we are interested in the variance of the difference between two random variables, we

can easily compute Var[X − Y ] = Var[X] + Var[Y ]− 2 ·Cov[X, Y ], i.e. we use the above

formula with a = 1 and b = −1.

The variance of the sum of more than two random variables has a similar structure:

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi] + 2 ·
n∑
i=1

n∑
j=i+1

Cov[Xi, Xj]

=
n∑
i=1

n∑
j=1

Cov[Xi, Xj].

The first and the second equality of the above equation are equivalent, since Cov[Xi, Xi] =

Var[Xi]. If each of the random variables in the sum are multiplied by a scalar, the variance

becomes:

Var

[
n∑
i=1

ai ·Xi

]
=

n∑
i=1

a2i · Var[Xi] + 2 ·
n∑
i=1

n∑
j=i+1

ai · aj · Cov[Xi, Xj]

=
n∑
i=1

n∑
j=1

ai · aj · Cov[Xi, Xj].

Similarly, we can define some useful properties for calculating the covariance of random

variables. Consider the following general case of three random variables Y , X, Z and
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three scalars a, b, and c. The covariance between a ·X + b · Y and c · Z is:

Cov[a ·X + b · Y, c · Z] =Cov[a ·X, c · Z] + Cov[b · Y, c · Z]

=ac · Cov[X,Z] + bc · Cov[Y, Z].

The first equality follows from the fact that we can separate sums inside a covariance,

and in the second equality we take out constants from the covariance.2 We can generalize

this property as follows:

Cov

[
n∑
i=1

ai ·Xi,
m∑
j=1

bj · Yj

]
=

n∑
i=1

m∑
j=1

aibjCov[Xi, Yj].

Next, we introduce the concept of conditional moments. Consider two random variables

X and Y with joint density function fX,Y (x, y). We have seen before how we can compute

the conditional density of X given that Y takes a specific value. Using this conditional

density, it is easy to derive the conditional expectation of X:

E[X|Y = y] =

∫ ∞
−∞

x · fX|Y (x|y)dx.

The conditional expectation tells us, what value we expect X to take, given that we know

that Y takes the value y. The conditional expectation has several properties, and for this

course the two most relevant once are:

• E[X|X] = X, and

• if X and Y are independent, then E[X|Y ] = E[X].

The first property shows that, we can take out of the expectation what is “known,” i.e.

if we know X there is no point in taking its expectation. The second property shows

that, there is no added value in conditioning on a random variable that is independent

from our variable of interest. For example, if we are interested in the expected value of

2These basic properties can be easily proved by using the fact that Cov[X,Y ] = E[XY ]− E[X]E[Y ].
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rolling a dice, there is no point in conditioning on the weather, since the weather and the

dice are most likely two independent random variables. For the sake of simplicity, we will

only prove the second property (see Section 2.1.3).

Similarly to the conditional expectation, it is possible to compute other conditional mo-

ments. For example, the conditional variance is computed as:

Var[X|Y = y] =E
[
(X − E[X|Y = y])2

∣∣Y = y]

=

∫ ∞
−∞

(x− E[X|Y = y])2 · fX|Y (x|y)dx.

2.1.3 Independence

In statistics two events A and B are independent if:

P[A ∩B] = P[A] · P[B].

In other words, the probability that the events A and B happen, equals the product

between the probability that A happens and the probability thatB happens. Two random

variables X and Y with joint distribution function FX,Y (x, y) are said to be independent

if:

FX,Y (x, y) =P[X ≤ a, Y ≤ b]

=P[X ≤ a]P[Y ≤ b] ⇔ X and Y are independent.

In other words, their joint distribution function equals the product of their marginal

distribution functions. From this definition it follows that the joint density of two inde-

pendent random variables X and Y equals the product of the marginal densities:

fX,Y (x, y) = fX(x)fY (y) ⇔ X and Y are independent.

From the definition of independence, we can derive some very useful results. For example,
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the expected value of the product of two independent random variables X and Y equals

the product of the expected values:

E[XY ] =

∫ ∞
−∞

∫ ∞
−∞

xy · fX,Y (x, y)dydx

=

∫ ∞
−∞

∫ ∞
−∞

xy · fX(x)fY (y)dydx

=

∫ ∞
−∞

x · fX(x)

(∫ ∞
−∞

y · fY (y)dy

)
dx

=

∫ ∞
−∞

x · fX(x) · E[Y ]dx

=E[Y ] ·
∫ ∞
−∞

x · fX(x)dx

=E[Y ]E[X].

Importantly, from this result it follows that the covariance of two independent random

variables X and Y equals zero:

Cov[X, Y ] = E[XY ]− E[X]E[Y ] = E[X]E[Y ]− E[X]E[Y ] = 0.

However, always remember that independence implies a zero covariance, but a zero co-

variance does not imply independence!

Example 2.1: Zero covariance but dependent

Consider the normally distributed random variable X with mean zero, i.e. X ∼

N (0, σ2). For this random variable it holds that E[X] = 0 and E[X3] = 0.

Next, consider the random variable Y = X2. Clearly X and Y are not independent.

However, their covariance equals zero:

Cov[X, Y ] =E[XY ]− E[X]E[Y ]

=E[XX2]− E[X]E[X2]

=E[X3]− E[X]E[X2]

=0− 0 · E[X2] = 0.
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For two independent random variables X and Y , the density of X conditional on Y is

simply the marginal density:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

=
fX(x)fY (y)

fY (y)
= fX(x).

From this result, it follows that the conditional expectation reduces to the unconditional

expectation:

E[X|Y = y] =

∫ ∞
−∞

x · fX|Y (x|y)dx

=

∫ ∞
−∞

x · fX(x)dx

=E[X].

Remark 2.1: Independent random variables

Let X and Y be two random variables. If X and Y are independent, the following

results hold:

• FX,Y (x, y) = FX(x)FY (y)

• fX,Y (x, y) = fX(x)fY (y)

• E[XY ] = E[X]E[Y ]

• Cov[X, Y ] = 0

• fX|Y (x|y) = fX(x)

• E[X|Y = y] = E[X]

2.1.4 Law of iterated expectations

In the first part of this section, I introduced the concept of a conditional expectation, i.e.

E[X|Y = y]. The conditional expectation depends on the value y, which is a value of the

random variable Y . In other words, for different values of y the conditional expectation

will take differ values.
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Example 2.2:

Consider a fair six-sided die. Let the discrete random variable X be the number

shown on the die when we throw it. Let Y be a random variable equal to 1 if the

number shown on the die is larger than 4 and zero otherwise.

It is easy to show that E[X] = 3.5. Let us now consider the conditional expectation

of X given that Y = 1. In other words, we known that the number shown on the die

is either 5 or 6 and we have to compute the expected value of X. This conditional

expectation is E[X|Y = 1] = 5.5: if we know that the die shows either the number 5

or 6, on average it will show 5.5. Similarly, we can calculate E[X|Y = 0] = 2.5.

The conditional expectation E[X|Y = y] therefore varies depending on the value of

y.

We can therefore think of E[X|Y ] as a function of the random variable Y . If we take the

expectation of this function we obtain:

E[E[X|Y ]] =

∫ ∞
−∞

E[X|Y = y] · fY (y)dy

=

∫ ∞
−∞

(∫ ∞
−∞

x · fX|Y (x|y)dx

)
fY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

x · fX|Y (x|y)fY (y)dydx

=

∫ ∞
−∞

∫ ∞
−∞

x · fX,Y (x, y)dydx

=

∫ ∞
−∞

x ·

(∫ ∞
−∞

fX,Y (x, y)dy

)
dx

=

∫ ∞
−∞

x · fX(x)dx = E[X]

where I used the definition of the conditional density to replace fX|Y (x|y)fY (y) with

fX,Y (x, y), and I used the definition of the marginal density in the last step.

This result is known as the law of iterated expectations and it states that on average the

conditional expectation equals the unconditional expectation.
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Theorem 2.1: Law of iterated expectations

Let X and Y be two random variables, and let E[X|Y = y] be the conditional

expectation of X given Y . It holds that:

E
[
E[X|Y ]

]
= E[X]

2.2 Moments of time series data

2.2.1 Mean, variance, autocovariance and autocorrelation

As for simple random variables, we can compute the mean and variance also for time

series data. Recall that a time series is simply a collection of random variables indexed

by time. A complete statistical description of a time series is given by its joint distribution

function. Consider the time series {Yt}Tt=1, i.e. the time series consists of random variables

Yt for t = 1, . . . , T . The joint distribution function of these random variables is:

F (y1, . . . , yt, . . . , yT ) = P[Y1 ≤ y1, . . . , Yt ≤ yt, . . . , YT ≤ yT ].

The joint distribution function tells us, what the probability is that jointly Y1 is smaller

equal y1, Y2 is smaller equal y2, etc. In practice, it is however extremely difficult to define

the joint distribution function for the entire time series and we generally focus on the

marginal distribution function:

Ft(y) = P[Yt ≤ y].

In other words, we look at the distribution function for each time period t separately.

Note, that I index the marginal distribution with the time index: the marginal distribu-

tion of the time series can change over time. Analogously, we denote the marginal density

function of Yt by ft(y).

47



Introduction to Time Series Econometrics v0.1

Example 2.3: Distribution of a white noise process

One of the most simple processes in time series is the so called white noise process.

This time series is a collection of independent random variables with zero mean and

standard deviation σZ . Formally, we can write it as:

Yt = Zt

where Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2
Z . The abbreviation i.i.d.

stands for independent and identically distributed. In other words, each time period

t we draw a random variable form the same distribution which is independent of

the previously drawn random variables. In the notation introduced in Chapter 1, Zt

represents the random remainder component Xt.

Since the random variables of this time series are independent and identically dis-

tributed, we can write the joint distribution function as:

F (y1, y2, . . . , yT ) =F1(y1) · F2(y2) · . . . FT (yT ) (independence)

=F (y1) · F (y2) · . . . F (yT ) (identically distributed).

Similarly, we can define the joint density function as the product of the marginal

densities:

f(y1, y2, . . . , yT ) = f(y1) · f(y2) · . . . f(yT ).

In the reminder of this script, Zt will always represent an i.i.d. random variable with

zero mean and constant variance. Moreover, I will refer to a time series {Zt}Tt=1 as white

noise.3 The following two definitions specify the expected value and the variance of a

time series.

3Technically, this processes is a strict white noise process. In time series econometrics we distinguish
between different “forms” of white noise. However, for the sake of simplicity in this course we only
consider strict white noise.
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Definition 2.1: Expected value

Let {Yt}Tt=1 be a time series. We compute the expected value (also called the mean)

as:

E[Yt] = µt =

∫ ∞
−∞

y · ft(y)dy.

The expected value µt can vary over time. If it is constant, we omit the time index,

i.e. µ.

Definition 2.2: Variance

Let {Yt}Tt=1 be a time series. We compute the variance as:

Var[Yt] = σ2
t =

∫ ∞
−∞

(y − µt)2 · ft(y)dy.

The variance σ2
t can vary over time. If it is constant, we omit the time index, i.e.

σ2.

To better understand how we can compute the expected value and the variance of a time

series, let’s have look at some examples.

Example 2.4: Expected value and variance of a white noise process

Consider the white noise process {Yt}Tt=1 defined as:

Yt = Zt

where Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2
Z .

The expected value of this process is:

E[Yt] = E[Zt] = 0

and the variance is:

Var[Yt] = Var[Zt] = σ2
Z .
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Example 2.5: Expected value and variance of a random walk

Consider the following time series process:

Yt = Yt−1 + Zt

where Zt is white noise, i.e. Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2
Z . This

time series process is called random walk. We can rewrite this time series process to

bring it in the form we have see in Chapter 1. To this end, we have to iteratively

substitute the time series:

Yt =Yt−1 + Zt

=Yt−2 + Zt−1 + Zt (we use the fact that Yt−1 = Yt−2 + Zt−1)

=Yt−3 + Zt−2 + Zt−1 + Zt

=Yt−4 + Zt−3 + Zt−2 + Zt−1 + Zt

...

=
t−1∑
s=0

Zt−s︸ ︷︷ ︸
=Xt

= Xt.

In other words, a random walk is a time series without trend and seasonal component,

and with a remainder component being equal to the cumulative sum of i.i.d. random

variables with E[Zt] = 0 and Var[Zt] = σ2
Z .

The expected value of Yt is then:

E[Yt] = E

[
t−1∑
s=0

Zt−s

]
=

t−1∑
s=0

E[Zt−s] = 0
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and the variance is (recall the formulas seen in the previous section):

Var[Yt] =Var

[
t−1∑
s=0

Zt−s

]

=
t−1∑
s=0

Var[Zt−s] + 2 ·
t−1∑
s=0

t−1∑
j=s+1

Cov[Zt−s, Zt−j]

=
t−1∑
s=0

Var[Zt−s]

=
t−1∑
s=0

σ2
Z = t · σ2

Z .

Since the random variables Zt are independent, we have that Cov[Zt−s, Zt−j] = 0 for

s 6= j. This result shows that the random walk process has a time varying variance:

over time the variance increases.

Example 2.6: Expected value and variance of a random walk with drift

Consider the following time series process:

Yt = δ + Yt−1 + Zt

where Zt is white noise, i.e. Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2
Z . This

time series process is called random walk with drift. We can rewrite this time series

process to bring it in the form we have seen in Chapter 1. To this end, we have to
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iteratively substitute the time series:

Yt =δ + Yt−1 + Zt

=δ + δ + Yt−2 + Zt−1 + Zt (we use the fact that Yt−1 = δ + Yt−2 + Zt−1)

=2 · δ + δ + Yt−3 + Zt−2 + Zt−1 + Zt

=3 · δ + δ + Yt−4 + Zt−3 + Zt−2 + Zt−1 + Zt

...

= δ · t︸︷︷︸
=Tt

+
t−1∑
s=0

Zt−s︸ ︷︷ ︸
=Xt

= Tt +Xt.

In other words, a random walk with drift is a time series with a linear trend and with

a remainder component being equal to the cumulative sum of i.i.d. random variables

with E[Zt] = 0 and Var[Zt] = σ2
Z .

The expected value of Yt is then:

E[Yt] = E

[
δ · t+

t−1∑
s=0

Zt−s

]
= δ · t+

t−1∑
s=0

E[Zt−s] = δ · t

and the variance is (recall the formulas seen in the previous section):

Var[Yt] =Var

[
δ · t+

t−1∑
s=0

Zt−s

]

=Var

[
t−1∑
s=0

Zt−s

]

=
t−1∑
s=0

Var[Zt−s] + 2 ·
t−1∑
s=0

t−1∑
j=s+1

Cov[Zt−s, Zt−j]

=
t−1∑
s=0

Var[Zt−s]

=
t−1∑
s=0

σ2
Z = t · σ2

Z .

Since the random variables Zt are independent, we have that Cov[Zt−s, Zt−j] = 0
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for s 6= j. The random walk with drift has a time-varying expected value and

variance.

Example 2.7: Generating a random walk in R

Simulating a random walk process in R can be achieved by running the following

code:

# For reproducibility:

set.seed(123)

# Generate i.i.d. random variables:

z <- rnorm(1000)

# The random walk without drift is then simply the cumulative

# sum of these random variables

y <- cumsum(z)

# The random walk with drift is instead defined as the

# cumulative sum of the i.i.d. random variables plus

# the drift:

yt <- cumsum(z+0.2)

# Convert the data to time series:

y <- ts(y, start=1, frequency = 1)

yt <- ts(yt , start=1, frequency = 1)

Note that we generate the random walk processes by using the fact that the time

series is generate by the sum of i.i.d. random variables Zt (see the previous two

examples). We can generate a plot of the two random walks using the following code:

# Plot the random walk with drift:

plot(yt , main="Random walk")

# Plot the random walk without drift in blue:

lines(y, col="blue")

# Add lines depicting the trend:

abline(a=0, b=0.2, lty=2)

abline(h=0, lty=2, col="blue")

Figure 2.1 depicts the two random walks, in blue without and in black with drift.

The dashed lines represent the trend in the two time series: for the random without
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drift, the trend equals a flat line, whereas for the random walk with drift it is a line

with slope 0.2.

Figure 2.1: Simulated random walks

A concept unique to the time series econometrics field is that of the autocovariance.

Similar to the covariance between two random variables, the autocovariance measures

the linear relation between random variables that are part of a time series process.

Definition 2.3: Autocovariance

Let {Yt}Tt=1 be a time series. We compute the autocovariance as:

Cov[Yt, Yt−h] = γt(h) = E[(Yt − µt)(Yt−h − µt−h)].

We refer to γt(h) as the autocovariance function. For h = 0 we have that γt(0) =

Var[Yt].

Example 2.8: Autocovariance of a white noise process

Let’s consider again the white noise process we saw in a previous example:

Yt = Zt

where Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2
Z . We start by computing the
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autocovariance for h = 1:

γt(1) = Cov[Yt, Yt−1] = Cov[Zt, Zt−1] = 0

where the last equality follows from the fact that the random variable Zt is indepen-

dent. In fact, for all h 6= 0 we have that γt(h) = 0.

Example 2.9: Autocovariance of a random walk process

Let’s consider a random walk without drift:

Yt = Yt−1 + Zt

where Zt is white noise, i.e. Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2
Z . We

start by computing the autocovariance for h = 1:

γt(1) =Cov[Yt, Yt−1]

=Cov[Yt−1 + Zt, Yt−1]

=Covt−1[Yt−1, Yt−1] + Cov[Zt, Yt−1]

=Vart−1[Yt−1] + 0

=(t− 1) · σ2
Z .

Note that Cov[Zt, Yt−1] = 0 since Zt is i.i.d. and Yt−1 does not depend on future

values of Zt. To see this, recall that Yt−1 = (Z1 + Z2 + · · ·+ Zt−1).
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Similarly, we can compute γt(2):

γt(2) =Cov[Yt, Yt−2]

=Cov[Yt−1 + Zt, Yt−2]

=Cov[Yt−1, Yt−2] + Cov[Zt, Yt−2]

=Cov[Yt−2 + Zt−1, Yt−2] + 0

=Cov[Yt−2, Yt−2] + Cov[Zt−1, Yt−2]

=Var[Yt−2] + 0

=(t− 2) · σ2
Z .

In general, the autocovariance of a random walk is defined as:

γt(h) = (t− h) · σ2
Z

which shows that the autocovariance of a random walk depends on the time index t.

Moreover, if we set h = 0 we get the variance of a random walk.

If we standardize the autocovariance by the appropriate standard deviations, we obtain

the autocorrelation of a time series. Similarly to the classical correlation measure, the

autocorrelation is bounded between −1 and +1.

Definition 2.4: Autocorrelation function (ACF)

Let {Yt}Tt=1 be a time series. We compute the autocorrelation as:

Corr[Yt, Yt−h] = ρt(h) =
Cov[Yt, Yt−h]√
Var[Yt]Var[Yt−h]

.

We refer to ρt(h) as the autocorrelation function (ACF). For h = 0 we have that

ρt(0) = 1, and for h 6= 0 we have that −1 ≤ ρt(h) ≤ 1.
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Example 2.10: Autocorrelation of a random walk process

Let’s consider a random walk without drift:

Yt = Yt−1 + Zt

where Zt is white noise, i.e. Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2
Z . We have

seen that its variance and autocovariance can be computed as:

γt(h) = (t− h) · σ2
Z .

We can therefore compute its autocorrelation as:

ρt(h) =
γt(h)√

γt(0)γt−h(0)

=
(t− h) · σ2

Z√
t · σ2

Z · (t− h) · σ2
Z

=
(t− h) · σ2

Z

σ2
Z ·
√
t(t− h)

=

√
t− h
t

2.2.2 Conditional moments

The concept of conditional expectation and conditional variance plays a very important

role in time series econometrics. For example, when predicting a time series we ask

the question: “Having observed the time series up to today, what value do I expect

for tomorrow?” We can translate this question in statistical terms as the conditional

expectation of the time series.
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Definition 2.5: Conditional expectation of a time series

Let {Yt}Tt=1 be a time series. The expectation of Yt+1 conditional on the time series

up to time t is:

E[Yt+1|Yt, Yt−1, Yt−2, . . . ] =

∫ ∞
−∞

yft+1(y|yt, yt−1, yt−2, . . . )dy.

If we denote by Ft the information enclosed in Yt, Yt−1, Yt−2, . . . , we can write the

conditional expectation as E[Yt+1|Yt, Yt−1, Yt−2, . . . ] = E[Yt+1|Ft].

Importantly, the conditional expectation has the following properties:

• E[Yt|Ft] = E[Yt|Yt, Yt−1, Yt−2, . . . ] = Yt, and

• if Yt and Wt are two independent time series, E[Yt|Wt] = E[Yt].

Intuitively, the first property of the conditional expectation states that if we condition

on Yt when taking the expectation of Yt, we actually know its value and we can take it

out from the expectation. For example, let’s assume that you are interested in the return

of a stock in your portfolio. If you compute today’s average return knowing that today’s

return was 0.8%, the conditional expectation would simply equal 0.8%. The second

property simply states that if the time series is independent of another time series, there

is no added value in conditioning on the time series when computing the expectation of

the other one.
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Definition 2.6: Conditional variance of a time series

Let {Yt}Tt=1 be a time series. The variance of Yt+1 conditional on the time series up

to time t is:

Var[Yt+1|Yt, Yt−1, Yt−2, . . . ] =

∫ ∞
−∞

(
y − E[Yt+1|Ft]

)2

ft+1(y|yt, yt−1, yt−2, . . . )dy.

If we denote by Ft the information enclosed in Yt, Yt−1, Yt−2, . . . , we can write the

conditional variance as Var[Yt+1|Yt, Yt−1, Yt−2, . . . ] = Var[Yt+1|Ft].

Importantly, the conditional variance has the following properties:

• Var[Yt|Ft] = Var[Yt|Yt, Yt−1, Yt−2, . . . ] = 0, and

• if Yt and Wt are two independent time series, Var[Yt|Wt] = Var[Yt].

The first property states that, when we know the value of the random variable, its vari-

ance is zero. The second property has the same intuition as the second property of the

conditional expectation. For the sake of brevity, I will avoid to always write out all the

conditioning variables, and use the short-hand notation Ft.

Example 2.11: Conditional expectation and variance of a random walk

process

Let’s consider once again the random walk with trend:

Yt = δ + Yt−1 + Zt

where Zt is white noise, i.e. Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2
Z . We can

compute the expectation of Yt+1 conditional on the time series up to time t as:

E[Yt+1|Ft] = E[δ + Yt + Zt+1|Ft]

= δ + E[Yt|Ft] + E[Zt+1|Ft].

Let’s first focus on E[Yt|Ft]. Intuitively, we can take out from the expectation “what is

known” and since we are taking the expectation conditional on Yt, Yt−1, . . . , we know
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Yt. In other words, we have that E[Yt|Ft] = Yt. The second expectation E[Zt+1|Ft]

is the expectation of the i.i.d. random variable Zt+1 conditional on Yt, Yt−1, . . . .

Since Zt+1 is independent of past values of the random walk, this expectation equals

the unconditional expectation, i.e. E[Zt+1|Ft] = E[Zt+1] = 0. Summarizing, the

conditional expectation of the random walk with drift is:

E[Yt+1|Ft] = δ + E[Yt|Ft] + E[Zt+1|Ft]

= δ + Yt.

This result shows that for a random walk with drift, if we observe the time series up

to today, the expected value for tomorrow is todays value plus the drift.

The variance of the random walk with drift is instead compute as:

Var[Yt+1|Ft] = Var[δ + Yt + Zt+1|Ft]

= Var[Zt+1|Ft]

= Var[Zt+1]

= σ2
Z .

The drift δ is a constant and can therefore be removed. Moreover, conditional on

Yt, Yt−1, . . . we know Yt and can treat it also as a constant. Since Zt+1 is independent

of Yt, Yt−1, . . . its conditional variance equals its unconditional variance.

2.3 Stationarity

As we have seen in Chapter 1, time series discussed in this course have the form:

Yt = Tt + St +Xt
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where Tt and St are deterministic trend and seasonal components, and Xt is a random

remainder component. We have seen how we can model (or remove) the first two com-

ponents. In the next chapter we will learn some of the most important models for the

remainder component. These models can however only be used when the remainder term

is stationary. In the following we will learn how this statistical property is defined and

what its intuition is.

For the random walk with drift we have seen that both its expected value and its variance

vary over time. This is an indication that the time series does not have some constant

behavior. In contrast, a stationary time series has regularity in its statistical properties.

In particular, its statistical properties do not depend on the time at which the time series

is observed. In time series econometrics we refer to this regularity as strict stationarity,

which is formally defined as follows:

Definition 2.7: Strict stationarity

The probabilistic behavior of a stationary time series {Yt}Tt=1 does not dependent

on t. The joint distribution of a collection of random variables of the time series

Yt1 , . . . Ytg is the same as that of the same collection shifted by h periods:

P[Yt1 ≤ a1, Yt2 ≤ a2, . . . Ytg ≤ ag] = P[Yt1+h ≤ a1, Yt2+h ≤ a2, . . . Ytg+h ≤ ag].

To better understand this definition, let’s start with a simple implication of strict station-

arity. The definition implies that for a stationary time series the following holds:

P[Yt ≤ a] = P[Yt+h ≤ a].

In other words, the marginal distribution function of Yt is the same as that of Yt+h. The

elements of a strictly stationary time series have therefore the same distribution over

time. The definition of strict stationarity generalizes this concept to groups of elements

of a time series. For example, the joint distribution of Yt and Yt+1 is the same as that of

Yt+h and Yt+h+1.
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In practice, it is extremely difficult to test whether a time series is in fact strictly sta-

tionary. Usually it is enough to consider a weaker form of stationarity. The concept

of covariance stationarity (also called weak stationarity) imposes conditions only on the

expected value and the autocovariance of a time series.

Definition 2.8: Covariance stationartiy

A time series {Yt}Tt=1 with finite variance is covariance stationary if:

• the expected value µt = E[Yt] is constant and does not depend on time, and

• the autocovariance γt(h) = Cov[Yt, Yt−h] is constant and does not depend on

time.

For a covariance stationary time series we drop the time index and write µ and

γ(s).

Note that the above definition also implies that the variance is constant over time (γt(0)

corresponds to the variance). In general, it is important to understand the difference

between strict and covariance stationarity. The former imposes regularity conditions on

the entire distribution of a time series. The latter only imposes that the expected value

and the autocovariance are constant over time. In particular, a covariance stationary

time series could still have higher moments that are time-dependent, e.g. time-dependent

skewness.

The autocorrelation function of a covariance stationary time series has a special form

thanks to the constant variance:

Definition 2.9: Autocorrelation function of a stationary time series

Let {Yt}Tt=1 be a covariance stationary time series. We compute the autocorrelation

as:

Corr[Yt, Yt−h] = ρ(h) =
Cov[Yt, Yt−h]

Var[Yt]
=
γ(h)

γ(0)
.

We refer to ρ(h) as the autocorrelation function (ACF). For h = 0 we have that

ρ(0) = 1, and for h 6= 0 we have that −1 ≤ ρ(h) ≤ 1.

In this course we are only going to analyze time series in respect to their covariance
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stationarity. In the reminder of this script I will therefore refer to covariance stationarity

simply as stationarity. Nevertheless, it is still important to know the definition and

concept of strict stationarity.

Clearly, the random walk with and without drift is not stationary, since its variance is

time dependent (recall that for a random walk we have Var[Yt] = t · σ2
Z). A white noise

process is instead covariance stationary. As we have seen in an example in the previous

section, a white noise process has an expected value of zero and a constant variance equal

to σ2
Z . Let’s have a look at some other examples.

Example 2.12: Stationarity of a moving average

Let the time series {Yt}Tt=1 be defined as:

Yt =
1

2

(
Zt + Zt−1

)
where Zt is white noise, i.e. Zt is i.i.d. and has E[Zt] = 0 and Var[Zt] = σ2

Z . In other

words, at time t the time series is an average of today’s and yesterday’s observation

of a white noise process.

The expected value of this process is:

E[Yt] =E
[1

2

(
Zt + Zt−1

)]
=

1

2
E[Zt] +

1

2
E[Zt−1]

=0 + 0 = 0.
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The variance of the time series is:

Var[Yt] =Var
[1

2

(
Zt + Zt−1

)]
=

1

4
Var[Zt + Zt−1]

=
1

4

(
Var[Zt] + Var[Zt−1] + 2 · Cov[Zt, Zt−1]

)
=

1

4

(
σ2
Z + σ2

Z + 2 · 0
)

=
1

2
σ2
Z

The expected value and the variance of this process are constant and do not depend

on time. Next, we have to compute the autocovariance to verify that γt(h) also does

not depend on time for all values of h. Let’s start by computing γt(1):

γt(1) =Cov[Yt, Yt−1]

=Cov
[1

2

(
Zt + Zt−1

)
, Yt−1

]
=

1

2
Cov[Zt, Yt−1] +

1

2
Cov[Zt−1, Yt−1]

=
1

2
Cov

[
Zt,

1

2

(
Zt−1 + Zt−2

)]
+

1

2
Cov

[
Zt−1,

1

2

(
Zt−1 + Zt−2

)]
=

1

4
Cov[Zt, Zt−1] +

1

4
Cov[Zt, Zt−2] +

1

4
Cov[Zt−1, Zt−1] +

1

4
Cov[Zt−1, Zt−2]

=0 + 0 +
1

4
Cov[Zt−1, Zt−1] + 0

=
1

4
Var[Zt−1] =

1

4
σ2
Z

where I used the properties of the covariance seen in Section 2.1.2, and the fact that

the white noise process is a collection of i.i.d. random variables, i.e. Cov[Zt, Zt−s] = 0
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for s 6= 0. Next, let’s compute the autocovariance with two lags:

γt(2) =Cov[Yt, Yt−2]

=Cov
[1

2

(
Zt + Zt−1

)
, Yt−2

]
=

1

2
Cov[Zt, Yt−2] +

1

2
Cov[Zt−1, Yt−2]

=0 + 0 = 0.

Again, since Zt is generated independently at each time point, it does not depend

from past values of Yt, and therefore the covariance between Zt and Yt−1 and Yt−2 is

zero. If you compute the autocovariance for other values of h > 1, you will get also

0.

To summarize, we have found that the expected value and the variance of the time

series {Yt}Tt=1 are constant and do not depend on time. Moreover, the autocovariance

function is:

γ(h) =


1
2
σ2
Z if h = 0

1
4
σ2
Z if |h| = 1

0 else

which also does not depend on time. We can therefore conclude that the time series

is covariance stationary.

At this point it should become clear why we decompose a time series in its trend, seasonal

and remainder component. Let’s have a look at an example that highlights the role of

the decomposition.

Example 2.13: Stationarity of a time series with trend

Let’s consider a time series {Yt}Tt=1 defined as:

Yt = a0 + a1 · t︸ ︷︷ ︸
=Tt

+ Zt︸︷︷︸
=Xt
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where Zt is white noise. The time series has a linear trend and a random remainder

component.

We now investigate if this time series is stationary. To this end, we compute first its

expected value:

E[Yt] =E[a0 + a1 · t+ Zt]

=a0 + a1 · t+ E[Zt]

=a0 + a1 · t.

The expected value clearly depends on time. In this case we cannot directly use

one of the models we will see in Chapter 3, since they require the time series to be

stationary. We have seen in Chapter 1 that we can remove a linear trend by taking

the first difference:

∆Yt =a0 + a1 · t+ Zt − (a0 + a1 · (t− 1) + Zt−1)

=a1 + Zt − Zt−1.

To verify if ∆Yt is stationary, we start by computing its expected value:

µ =E[∆Yt]

=E[a1 + Zt − Zt−1]

=a1 + E[Zt]− E[Zt−1]

=a1 + 0 + 0 = a1
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which shows that the expected value is constant. Next we compute the variance:

Var[∆Yt] =Var[a1 + Zt − Zt−1]

=Var[Zt − Zt−1]

=Var[Zt] + Var[Zt−1]− 2 · Cov[Zt, Zt−1]

=σ2
Z + σ2

Z − 2 · 0 = 2 · σ2
Z

which is also constant and not dependent on time. Finally, we have to compute the

autocovariance of ∆Yt. Let’s start by computing γt(1):

γt(1) =Cov[∆Yt,∆Yt−1]

=Cov[a1 + Zt − Zt−1, a1 + Zt−1 − Zt−2]

=Cov[Zt − Zt−1, Zt−1 − Zt−2]

=Cov[Zt − Zt−1, Zt−1]− Cov[Zt − Zt−1, Zt−2]

=Cov[Zt, Zt−1]− Cov[Zt−1, Zt−1]− Cov[Zt, Zt−2] + Cov[Zt−1, Zt−2]

=0− Var[Zt−1]− 0 + 0 = −σ2
Z .

The autocovariance γt(2) is:

γt(2) =Cov[∆Yt,∆Yt−2]

=Cov[a1 + Zt − Zt−1, a1 + Zt−2 − Zt−3]

=Cov[Zt − Zt−1, Zt−2 − Zt−3]

=Cov[Zt − Zt−1, Zt−2]− Cov[Zt − Zt−1, Zt−3]

=Cov[Zt, Zt−2]− Cov[Zt−1, Zt−2]− Cov[Zt, Zt−3] + Cov[Zt−1, Zt−3]

=0− 0− 0 + 0 = 0.

You can easily verify that for |h| > 1 the autocovariance is equal to zero. We can
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summarize the autocovariance function as:

γ(h) =


2 · σ2

Z if h = 0

−σ2
Z if |h| = 1

0 else.

The autocorrelation function is then:

ρ(h) =


1 if h = 0

−0.5 if |h| = 1

0 else.

Since the expected value and the autocovariance (autocorrelation) function do not

depend on time, we can conclude that ∆Yt is stationary. By removing the trend,

we are left with a stationary time series that we can model with one of the models

presented in Chapter 3.

2.4 Estimation of the moments

In practice, when we are given a time series we have to estimate the expected value

and the autocovariance/autocorrelation function for the observed data. Let y1, . . . , yT

be the observations of a time series {Yt}Tt=1 (I use lowercase letters for observations,

and uppercase letters for random variables). In the following, I assume that we have

appropriately modified the time series to be stationary. If the time series is not stationary,

it is generally not possible (or at least difficult) to estimate its moments. At each point

in time, we only have one realization of the time series, i.e. yt. If the expected value

and the autocovariance change at each point in time, we have to estimate this quantities

for each t = 1, 2, . . . . However, we only have one observation for each time point, which

makes it not possible to estimate the expected value and the autocovariance. If the time

series is instead covariance stationary, its expected value and autocovariance are constant
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over time. As such, we can use all our observations y1, y2, . . . to estimate them.

We can estimate the expected value of a stationary time series as follows:

Definition 2.10: Sample mean of a stationary time series

Given the observations y1, . . . , yT of a covariance stationary time series {Yt}Tt=1, we

estimate the expected value by the sample mean:

µ̂ = y =
1

T

T∑
t=1

yt

Similarly, we can estimate the sample autocovariance function of a stationary time series

as follows:

Definition 2.11: Sample autocovariance of a stationary time series

Given the observations y1, . . . , yT of a covariance stationary time series {Yt}Tt=1, we

estimate the autocovariance as:

γ̂(h) =
1

T

T−h∑
t=1

(yt+h − y)(yt − y)

Finally, we can compute the sample autocorrelation function as follows:

Definition 2.12: Sample autocorrelation of a stationary time series

Given the observations y1, . . . , yT of a covariance stationary time series {Yt}Tt=1, we

estimate the autocorrelation as:

ρ̂(h) =
γ̂(h)

γ̂(0)

Example 2.14: The ACF of a time series in R

Let’s consider a time series {Yt}Tt=1 with linear trend:

Yt = 0.1 + 0.05 · t︸ ︷︷ ︸
=Tt

+ Zt︸︷︷︸
=Xt
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where Zt is white noise.

We can simulate this time series in R by running the following command:

# For reproducibility:

set.seed(123)

# Generate i.i.d. random variables:

z <- rnorm(1000)

# Generate the time series with a linear trend and white noise:

y <- 0.1 + 0.05*(1:1000) + z

# Transform ’y’ to a ts -object:

y <- ts(y, start=1, frequency = 1)

# Plot the time series:

plot(y, main="Time series with linear trend")

grid()

The simulated time series is shown in Figure 2.2.

Figure 2.2: Simulated time series with linear trend

Next, we take the first difference of the time series and plot {∆Yt}Tt=1 in Figure 2.3.

Clearly, after taking the first difference, we are left with a time series without any

trend component. We have seen in the previous section, that this time series is now

covariance stationary.
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# Remove the linear trend by taking the first difference:

Delta_y <- diff(y)

# Plot the new time series:

plot(Delta_y, main="First difference of the time series")

grid()

Figure 2.3: First difference of the simulated time series with linear trend

We can obtain estimates of the expected value, γ(0), γ(1) and ρ(1) as follows:

# Compute sample moments:

n <- length(Delta_y)

sample_mean <- sum(Delta_y)/n

sample_var <- sum(( Delta_y - sample_mean)^2)/n

sample_gamma_1 <- sum(( Delta_y[-1] - sample_mean)*

(Delta_y[-n] - sample_mean ))/n

sample_rho_1 <- sample_gamma_1/sample_var

In R we can easily obtain and plot the ACF for different values of h using the function

acf(). The following commands generate the plot shown in Figure 2.4.

# Plot the ACF:

acf(Delta_y)

grid()

By default, the function acf() computes the autocorrelation function. By setting
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the parameter type = "covariance" you obtain estimates of the autocovariance

function. The input parameter lag.max controls the number of lags for which the

autocorrelation is computed. In Figure 2.4, the first vertical line represents the value

of ρ(0) which is always equal to 1. The second vertical line shows that ρ̂(1) is roughly

equal to -0.5 (recall from the last example of the previous section that ρ(1) is -0.5).

For h > 1 the estimates are close to zero.

Figure 2.4: ACF of the first difference of the simulated time series with linear trend

2.5 Summary

In this chapter we have first reviewed some basic statistical concepts (e.g. the expected

value, the covariance, or conditional distributions). We have then seen how these con-

cepts can be applied to time series data. In particular, I have introduced the concept of

autocovariance/autocorrelation function. Finally, we have defined the concept of station-

arity.

By now you should be able to do some preliminary analyses of time series data. Given

a dataset of time-ordered observations we know how to identify and deal with trend

and seasonal components. We can then check whether the remainder term is in fact

stationary. Note that until now we have not seen a formal statistical test of stationarity.

Furthermore, we have not seen how “deal” with a non-stationary process, such as the
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random walk. We will learn more about stationarity in the next chapter.

Time series Yt

Plot the time series data (Section 1.5):
Trend: linear, quadratic, ... (determine n)

Seasonality: weekly, quarterly, ... (determine s)

Estimate the trend and seasonal
components (Section 1.5.2)

Remove the trend and seasonal
components (Section 1.5.3)

Analyze the remainder term: is it stationary?

Figure 2.5: Diagram of the time series analysis procedure
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2.6 Exercises

Exercise 2.1. Consider the following time series:

Yt =
1

3
(Zt + Zt−1 + Zt−2)

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z.

Is the process covariance stationary? If so, compute the expected value, the autocovariance

and autocorrelation function.

Exercise 2.2. Consider the following time series with a seasonal trend:

Yt = St + Zt

St = St−2

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z.

(1) Remove the seasonal component using the appropriate differencing operator.

(2) Compute for the differenced time series γ(0), γ(1), γ(2) and γ(3).

Exercise 2.3. Show that the autocovariance function can be written as:

γt(h) = E[(Yt − µt)(Yt−h − µt−h)] = E[YtYt−h]− µtµt−h.

Exercise 2.4. Consider the following time series:

Yt = Zt · Zt−1

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z.

(1) Is the process stationary? If so, specify the expected value and the autocorrelation

function.

74



Introduction to Time Series Econometrics v0.1

(2) Is there any time dependence in the process? I.e. are Yt and Yt−1 dependent or

independent?

Exercise 2.5. (Difficult) Consider the time series {Yt}Tt=1 defined as:

Yt =
1

2
Yt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z.

(1) Show that, by recursive substitution, the process can be written as Yt =
(
1
2

)t
Y0 +∑t−1

j=0

(
1
2

)j
Zt−j.

(2) Assume that t → ∞ (i.e. t is large) such that
(
1
2

)t
= 0, compute the expected value

and the variance of the time series. Is it stationary?
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CHAPTER

THREE

ARMA MODELS

Until now we have considered time series of the form:

Yt = Tt + St +Xt

and we have seen in Chapter 1 how we can model or remove the trend and seasonal

components. In this chapter, we will focus on what is left after taking care of Tt and

St. If we have estimated a model for the two components, we can get the remainder

component as:

Xt = Yt − Tt − St.

If instead we used first and seasonal differences, the time series that we will focus on

is:

∆d∆sXt.

For simplicity, I will refer to “what is left” as Xt. Moreover, I assume that Xt is stationary.

We will now see the most common model used in time series econometrics to model the

dynamics of Xt: the autoregressive moving average model (ARMA). Before introducing

the ARMA model, I will present two more simple models: the autoregressive model (AR)
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and the moving average model (MA).

The relevant chapters in the main references to this script are:

• Chapter 8.3 and 8.4 in Forecasting: principles and practice (Hyndman & Athana-

sopoulos, 2018),

• Chapter 3.1 in Time Series Analysis and Its Applications: With R Examples

(Shumway & Stoffer, 2017).

3.1 Autoregressive models

3.1.1 The AR(1) process

In an autoregressive process, today’s value of the time series linearly depends on its

previous values. The number of lagged values that influence today’s value of the time

series is referred to as the order of the autoregressive process. For example, let’s consider

the following process:

Xt = 0.1 + 0.5Xt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z .

Today’s value of the time series Xt equals a constant (0.1), a white noise random variable,

and 0.5-times the previous value of the time series Xt−1. Since the definition of this

process does only include the lagged value in the previous period, we say that it is an

autoregressive process of order 1, or more simply an AR(1).

This AR(1) process is very similar to the random walk process introduced in the previous

section. However, there is a very important distinction between the random walk process

and the AR(1) process defined above. The difference is that in the random walk process,

the lagged value of the time series influences today’s value one-to-one. In the above AR(1)

process, the lagged value is instead multiplied by 0.5, i.e. yesterday’s value only partially

determines today’s value. This small difference is very important since the AR(1) process
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defined above is stationary whereas the random walk is not. To see this, let’s re-write

the AR(1) process by repeated substitution (see also Exercise 2.5):

Xt = 0.1 + 0.5Xt−1 + Zt

= 0.1 + 0.5 (0.1 + 0.5Xt−2 + Zt−1) + Zt

= 0.1 + 0.5 · 0.1 + 0.52Xt−2 + 0.5Zt−1 + Zt

= 0.1 + 0.5 · 0.1 + 0.52 (0.1 + 0.5Xt−3 + Zt−2) + 0.5Zt−1 + Zt

= 0.1 + 0.5 · 0.1 + 0.52 · 0.1 + 0.53Xt−3 + 0.52Zt−2 + 0.5Zt−1 + Zt

...

= 0.1
t−1∑
s=0

0.5s +
t−1∑
s=0

0.5sZt−s + 0.5tX0

Remark 3.1: Geometric sequence

For a geometric sequence s =
∑n−1

i=0 a
i we have that s = 1−an

1−a . This result can be

easily verified:

s = a0 + a1 + · · ·+ an−1

s · a = a1 + a2 + · · ·+ an

s− s · a = a0 − an

s =
a0 − an

1− a
=

1− an

1− a
.

In particular, for n → ∞, we have that s = 1−an
1−a = 1

1−a if |a| < 1. This follows

from the fact that, if |a| < 1 then limn→∞ a
n = 0.

Assume that t is very large. Let’s now compute the expected value and the variance of
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Xt.

E[Xt] = 0.1
t−1∑
s=0

0.5s +
t−1∑
s=0

0.5sE[Zt−s] + 0.5tE[X0]

= 0.1
1− 0.5t

1− 0.5
+

t−1∑
s=0

0.5s · 0 + 0.5tE[X0]

=
0.1

1− 0.5
(since 0.5t ≈ 0 for large t)

Var[Xt] = Var

[
0.1

t−1∑
s=0

0.5s +
t−1∑
s=0

0.5sZt−s + 0.5tX0

]

= Var

[
t−1∑
s=0

0.5sZt−s + 0.5tX0

]

=
t−1∑
s=0

(0.5s)2Var[Zt−s] + (0.5t)2Var[X0]

= σ2
Z

t−1∑
s=0

0.52s + 0.52tVar[X0]

= σ2
Z

1− 0.25t

1− 0.25
+ 0.25tVar[X0]

=
σ2
Z

1− 0.25
(since 0.25t ≈ 0 for large t)

In other words, for large t, the mean and variance are constant. Importantly, to show this

result we used the fact that the coefficient multiplying the lagged value Xt−1 is smaller

than one in absolute terms. If instead of being 0.5, we would multiply the lagged value

by 1, the expected value would equal E[Xt] = 0.1 · t+ E[X0] which even for large t is not

constant.

From this example it appears that an AR(1) process is stationary as long as the coefficient

multiplying the lagged value is smaller than one in absolute terms. When this coefficient

equals one, the expected value and the variance are not constant and the process is not

stationary. But what happens if the coefficient is larger than one? Let’s consider the

case where the coefficient is 1.5, i.e. Xt = 0.1 + 1.5Xt−1 + Zt. The expected value then
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is:

E[Xt] = 0.1
1− 1.5t

1− 1.5
+ 1.5tE[X0]

and 1.5t explodes for large values of t. What if we rewrite the process as follows:

Xt = 0.1 + 1.5Xt−1 + Zt

⇔ −0.1 +Xt − Zt = 1.5Xt−1

⇔ −0.1

1.5
+

1

1.5
Xt −

1

1.5
Zt = Xt−1

In other words, we can rewrite the process as:

Xt = −0.1

1.5
+

1

1.5
Xt+1 −

1

1.5
Zt

and you can show that this process is in fact stationary since the coefficient is smaller

than one in absolute terms. However, in practical terms, the process is not useful since

todays value depends on tomorrows value and we can therefore not use this information

to forecast the time series. We generally refer to this type of processes as stationary non-

causal AR process. In this context, non-causal refers to the fact that today’s value depends

on future realizations. The following definition summarizes the AR(1) process.
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Definition 3.1: AR(1) process

A time series {Xt}Tt=1 of the form:

Xt = c+ φXt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z is called an autoregressive process of order one, AR(1) for short.

For an AR(1) process we have that:

• if |φ| < 1: the process is stationary and causal,

• if |φ| > 1: the process is stationary but not causal,

• if |φ| = 1: the process is not stationary.

It can be shown that for a non-causal stationary AR process, there exists an equivalent

causal stationary AR process (same distribution). For the sake of this course, it is enough

that you known that there exists the possibility of having |φ| > 1 and that there are

solutions for this “issue”. For the reminder of this script, we will only distinguish between

|φ| < 1 and |φ| = 1.

3.1.2 Moments of the AR(1) process

If the AR(1) process is stationary, i.e. |φ| 6= 1, we can easily compute the expected value,

variance and autocorrelation function (ACF). The trick to compute these quantities is to

exploit the fact that the process is (weak) stationary: the expected value, the variance

and the ACF of a stationary process do not depend on time. Let’s start by computing

the expected value of an AR(1) process:

E[Xt] = E[c+ φXt−1 + Zt]

= c+ φE[Xt−1] + E[Zt]

= c+ φE[Xt−1].
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Since the process is stationary, the expected value is constant, i.e. µ = E[Xt] = E[Xt−1].

We can use this result and solve for the expected value:

µ = c+ φµ

⇔ (1− φ)µ = c

⇔ µ =
c

1− φ
.

The same logic can be applied to the variance of the process:

Var[Xt] = Var[c+ φXt−1 + Zt]

= φ2Var[Xt−1] + Var[Zt] + 2φCov[Xt−1, Zt]

= φ2Var[Xt−1] + σ2
Z .

Since the process is stationary, the variance is constant, i.e. γ(0) = Var[Xt] = Var[Xt−1].

We can use this result and solve for the variance:

γ(0) = φ2γ(0) + σ2
Z

⇔ (1− φ2)γ(0) = σ2
Z

⇔ γ(0) =
σ2
Z

1− φ2
.

Finally, we would like to compute the ACF of an AR(1). Let’s start by computing the

autocovariance with one lag, i.e. γ(1):

γ(1) = Cov[Xt, Xt−1]

= Cov[c+ φXt−1 + Zt, Xt−1]

= φCov[Xt−1, Xt−1] + Cov[Zt, Xt−1]

= φγ(0)

where I used the fact that Zt is i.i.d. and therefore independent of past values of time
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series, e.g. Xt−1. The autocovariance with two lags, i.e. γ(2), is instead:

γ(2) = Cov[Xt, Xt−2]

= Cov[c+ φXt−1 + Zt, Xt−2]

= φCov[Xt−1, Xt−2] + Cov[Zt, Xt−2]

= φCov[Xt−1, Xt−2]

= φγ(1)

since the process is stationary and therefore γ(1) = Cov[Xt, Xt−1] = Cov[Xt−1, Xt−2].

You can easily show that γ(h) = φγ(h − 1). Moreover, we showed before that γ(0) =

σ2
Z/(1− φ2). We can combine these information to obtain:

γ(h) = φγ(h− 1)

= φ|h|γ(0)

= φ|h|
σ2
Z

1− φ2

where I use |h| since h can be negative, see Remark 3.2. We can then compute the

autocorrelation function of the AR(1) process as:

ρ(h) =
γ(h)

γ(0)
= φ|h|

Remark 3.2: Autocovariance of stationarity time series

The autocovariance γ(h) and the autocorrelation ρ(h) of stationary time series do

not depend on time and it follows that:

γ(h) = Cov[Xt, Xt−h] = Cov[Xt, Xt+h] = γ(−h)

and ρ(h) = ρ(−h).
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Example 3.1: AR(1) process with positive coefficient

Consider the following time series:

Xt = 0.1 + 0.5Xt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = 1.

The time series {Xt}Tt=1 is a stationary AR(1) process, since 0.5 < 1.

The time series has the following expected value, variance and ACF:

E[Xt] =
0.1

1− 0.5
= 0.2

Var[Xt] =
1

1− 0.52
=

4

3

ρ(h) = 0.5|h|.

We can plot the ACF of this time series using the following code:

# Define the parameter of the AR(1) process

phi <- 0.5

# Define the lags for which we want to compute the ACF:

h <- 0:10

# Compute the ACF:

acf_values <- phi^h

# Plot the ACF:

plot(h, acf_values , type="b", ylim = c(-1, 1), main="ACF",

xlab = "Lags", ylab = "")

grid()

abline(h=0, lty=2)

84



Introduction to Time Series Econometrics v0.1

Figure 3.1: ACF of the AR(1) process with φ = 0.5

In R it is also possible to simulate an AR(1) process, that is we can generate randomly

observations from an AR(1). We can do this using the function arima.sim().

# For reproducibility:

set.seed(123)

# Simulate 500 observations:

y_sim <- arima.sim(model = list(ar = 0.5), n = 100)

# Convert to a ts -object:

y_sim <- ts(y_sim , start=1, frequency = 1)

# Plot the simulated time series:

plot(y_sim , type="o")

grid()

abline(h=0.2)
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Figure 3.2: Simulated AR(1) process with φ = 0.5

Example 3.2: AR(1) process with negative coefficient

Consider the following time series:

Xt = 0.1− 0.5Xt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = 1.

The time series {Xt}Tt=1 is a stationary AR(1) process, since −0.5 > −1.

The time series has the following expected value, variance and ACF:

E[Xt] =
0.1

1 + 0.5
=

0.2

3

Var[Xt] =
1

1− (−0.5)2
=

4

3

ρ(h) = (−0.5)|h|.

We can plot the ACF of this time series using the following code:
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# Define the parameter of the AR(1) process

phi <- -0.5

# Define the lags for which we want to compute the ACF:

h <- 0:10

# Compute the ACF:

acf_values <- phi^h

# Plot the ACF:

plot(h, acf_values , type="b", ylim = c(-1, 1), main="ACF",

xlab = "Lags", ylab = "")

grid()

abline(h=0, lty=2)

Figure 3.3: ACF of the AR(1) process with φ = −0.5

In R it is also possible to simulate an AR(1) process, that is we can generate randomly

observations from an AR(1). We can do this using the function arima.sim().
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# For reproducibility:

set.seed(123)

# Simulate 500 observations:

y_sim <- arima.sim(model = list(ar = -0.5), n = 100)

# Convert to a ts -object:

y_sim <- ts(y_sim , start=1, frequency = 1)

# Plot the simulated time series:

plot(y_sim , type="o")

grid()

abline(h=0.2/3)

Figure 3.4: Simulated AR(1) process with φ = −0.5

The simulated data and the ACF showcase the differences between an AR(1) with

positive and one with negative coefficient φ. In the case of a negative φ, the process

converges back to its expected value much quicker than the process with a positive

φ. Indeed, the ACF alternates between positive and negative values: after a positive

value, the time series is likely decreasing.
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Definition 3.2: Moments of an AR(1) process

A causal and stationary AR(1) process of the form:

Xt = c+ φXt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z has the following moments:

µ =
c

1− φ

γ(h) =


σ2
Z

1−φ2 if h = 0

φ|h|γ(0) if |h| ≥ 1

ρ(h) =


1 if h = 0

φ|h| if |h| ≥ 1

3.1.3 The AR(2) process

From the previous two examples you can see how the ACF changes depending on the

coefficient of the AR(1) model. In practice, we observe some data and want to find

the model and coefficient that best “match” the properties of the time series: its mean,

variance and autocorrelation. Often the simple AR(1) model will not be enough to achieve

this goal. Many time series dependent on more than just one past value.

An autoregressive time series that depends on its previous two lags is called AR(2). For

example, consider the following AR(2) process:

Xt = 0.1 + 0.5Xt−1 − 0.25Xt−2 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z .

Today’s value of the time series depends positively from yesterday’s value and negatively
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from the value observed two days ago. For example, assume that Xt are daily stock

returns of Apple Inc. On September 14, 2021, the company announces its new phone

and investors are euphoric: the stock return on that day is considerably large. This

enthusiasm carries on to the next trading day (the first lag of the time series has a positive

coefficient). But two days afterward, the effect of the new announcement reverses and the

return becomes smaller (the second lag of the time series has a negative coefficient).

As for the AR(1), we would like to known whether an AR(2) process is stationary, i.e. its

mean, variance and ACF do not depend on time. Also in this case, there are well known

conditions for the coefficients φ1 and φ2 that ensure that the time series is stationary.

Definition 3.3 summarizes these conditions. Unfortunatly they are not straightforward

to derive and I therefore avoid providing the proof in this script.1

Definition 3.3: AR(2) process

A time series {Xt}Tt=1 of the form:

Xt = c+ φ1Xt−1 + φ2Xt−2 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z is called an autoregressive process of order two, AR(2) for short.

An AR(2) process is causal and stationary if the following conditions hold:

• |φ1φ2| < 1

• φ2 + φ1 < 1

• φ2 − φ1 < 1

We can compute the mean of a stationary AR(2) process in the same way as we have

1A derivation of these conditions can be found in Example 3.9 in Shumway and Stoffer (2017, pp.
89-90).
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done for the AR(1) process:

µ = E[Xt] = E[c+ φ1Xt−1 + φ2Xt−2 + Zt]

= c+ φ1E[Xt−1] + φ2E[Xt−2] + E[Zt]

= c+ φ1µ+ φ2µ

⇔ (1− φ1 − φ2)µ = c

⇔ µ =
c

1− φ1 − φ2

The variance and autocovariance are instead more challenging to compute. We start by

simply computing the autocovariance at the lags h = 0, 1, 2:

γ(0) = Cov[Xt, Xt] =Cov[c+ φ1Xt−1 + φ2Xt−2 + Zt, Xt]

=φ1Cov[Xt−1, Xt] + φ2Cov[Xt−2, Xt] + Cov[Zt, Xt]

=φ1γ(1) + φ2γ(2) + σ2
Z

γ(1) = Cov[Xt, Xt−1] =Cov[c+ φ1Xt−1 + φ2Xt−2 + Zt, Xt−1]

=φ1Cov[Xt−1, Xt−1] + φ2Cov[Xt−2, Xt−1] + Cov[Zt, Xt−1]

=φ1γ(0) + φ2γ(1)

γ(2) = Cov[Xt, Xt−2] =Cov[c+ φ1Xt−1 + φ2Xt−2 + Zt, Xt−2]

=φ1Cov[Xt−1, Xt−2] + φ2Cov[Xt−2, Xt−2] + Cov[Zt, Xt−2]

=φ1γ(1) + φ2γ(0).

The first three autocovariances form a system of three equations in three unknowns:

γ(0) =φ1γ(1) + φ2γ(2) + σ2
Z (1)

γ(1) =φ1γ(0) + φ2γ(1) (2)

γ(2) =φ1γ(1) + φ2γ(0) (3)
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We therefore can use these three equations jointly and solve for γ(0), γ(1), γ(2). From

equation (2) we obtain:

γ(1) =
φ1

1− φ2

γ(0).

We can insert this result in equation (3) and obtain:

γ(2) =
φ2
1 + φ2 − φ2

2

1− φ2

γ(0).

We have now obtained expressions for γ(1) and γ(2) which only depend on γ(0). We can

insert these results in equation (1) and solve for γ(0):

γ(0) =φ1
φ1

1− φ2

γ(0) + φ2
φ2
1 + φ2 − φ2

2

1− φ2

γ(0) + σ2
Z

⇔
(

1− φ2
1

1− φ2

− φ2φ
2
1 + φ2

2 − φ3
2

1− φ2

)
γ(0) =σ2

Z

⇔ 1− φ2 − φ2
1 − φ2φ

2
1 − φ2

2 + φ3
2

1− φ2

γ(0) =σ2
Z

⇔ γ(0) =
1− φ2

1− φ2 − φ2
1 − φ2φ2

1 − φ2
2 + φ3

2

σ2
Z

=
1− φ2

(1 + φ2)(1− φ1 − φ2)(1 + φ1 − φ2)
σ2
Z .

The formula of the variance of an AR(2) process is considerably more complicated than

that of an AR(1). You can obtain the values of γ(1) and γ(2) by using the above formulas

and inserting the final value obtained for γ(0). For γ(h) with |h| ≥ 2 you can proceed

recursively:

γ(h) = φ1γ(h− 1) + φ2γ(h− 2).
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We can use these results to compute the ACF of an AR(2):

ρ(1) =
γ(1)

γ(0)
=

φ1

1− φ2

ρ(2) =
γ(2)

γ(0)
=
φ2
1 + φ2 − φ2

2

1− φ2

ρ(h) =
γ(h)

γ(0)
=φ1ρ(h− 1) + φ2ρ(h− 2) for |h| ≥ 2.

The moments of an AR(2) process are summarized in Definition 3.4.

Definition 3.4: Moments of an AR(2) process

A causal and stationary AR(2) process of the form:

Xt = c+ φ1Xt−1 + φ2Xt−2 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z has the following moments:

µ =
c

1− φ1 − φ2

γ(h) =



1−φ2
(1+φ2)(1−φ1−φ2)(1+φ1−φ2)σ

2
Z if h = 0

φ1
1−φ2γ(0) if |h| = 1

φ1γ(h− 1) + φ2γ(h− 2) if |h| ≥ 2

ρ(h) =


1 if h = 0

φ1
1−φ2 if |h| = 1

φ1ρ(h− 1) + φ2ρ(h− 2) if |h| ≥ 2
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Example 3.3: Moments of an AR(2) process

Consider the following AR(2) process:

Xt = 0.1 + 0.5Xt−1 − 0.25Xt−2 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

1.

Let’s first check if the process is stationary. We have:

|φ1φ2| = 0.125 < 1

φ2 + φ1 = 0.25 < 1

φ2 − φ1 = 0.75 < 1

which shows that the AR(2) process is in fact stationary. Next we can compute the

mean and the variance of the process:

µ = E[Xt] =
0.1

1− 0.5 + 0.25
=

2

15

γ(0) = Var[Xt] =
1 + 0.25

(1− 0.25)(1− 0.5 + 0.25)(1 + 0.5 + 0.25)
= 1.2698

Finally, we compute the autocorrelation function of this process:

ρ(1) =
0.5

1 + 0.25
= 0.4

ρ(2) = 0.5ρ(1)− 0.25ρ(0) = 0.2− 0.25 = −0.05

ρ(3) = 0.5ρ(2)− 0.25ρ(1) = −0.025− 0.1 = −0.125

...
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3.1.4 The AR(p) process

We can generalize the concept of the AR(1) and AR(2) processes to any order. In general

we refer to these models as autoregressive model of order p:

Xt = c+

p∑
i=1

φiXt−i + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z .

The conditions under which an AR(p) process is stationary are not straightforward and

I therefore do not cover them in this script. The mean of an AR(p) process is:

µ = E[Xt] =
c

1−
∑p

i=1 φi

The autocovariance (and variance) and the autocorrelation are more difficult to generalize

to any order p. To compute the autocovariance of an AR(p) process we follow the same

strategy as for the AR(2) process. More precisely, we start with the following p + 1

equations:

γ(0) =φ1γ(1) + φ2γ(2) + · · ·+ φpγ(p) + σ2
Z

γ(1) =φ1γ(0) + φ2γ(1) + · · ·+ φpγ(p− 1)

γ(2) =φ1γ(1) + φ2γ(0) + · · ·+ φpγ(p− 2)

...

γ(p) =φ1γ(p− 1) + φ2γ(p− 2) + · · ·+ φpγ(0)

and solve for the unknowns γ(0), . . . , γ(p). Then we can apply the following iterative
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procedure to obtain the values γ(h) for h ≥ p:

γ(h) = φ1γ(h− 1) + φ2γ(h− 2) + · · ·+ φpγ(h− p) for h ≥ p.

3.2 Moving average models

3.2.1 The MA(1) process

In a moving average model of order one (MA(1) for short), today’s value not only depends

on todays innovation Zt, but also on the previous innovation Zt−1:

Xt = c+ θZt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z .

The main difference with an AR(1) is the way in which past values of Zt influence today’s

value of the time series. You can think of Zt as unexpected and unpredictable shocks to

the time series, e.g. breaking news. Let’s consider again the daily stock returns of Apple

Inc. which we assumed to follow an AR(1) process:

Xt = 0.5Xt−1 + Zt.

Assume that the return on day t − 1 was 0%. On day t the announcement of the new

smart phone represents a positive shock on the stock return of Apple Inc., Zt = 1%, so

the time series is:

Xt =0.5Xt−1 + Zt

=0.5 · 0 + 1% = 1%.
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Let’s further assume that over the next couple of days there is no news that affects the

return of Apple Inc., i.e. Zt+1 = Zt+2 = Zt+3 = 0%:

Xt+1 = 0.5Xt + Zt+1 = 0.5 · 1% + 0 = 0.5%

Xt+2 = 0.5Xt+1 + Zt+2 = 0.5 · 0.5% + 0 = 0.25%

Xt+3 = 0.5Xt+2 + Zt+3 = 0.5 · 0.25% + 0 = 0.125%.

Even three days after the announcement, Zt has still an influence on the stock return Xt.

Now, let’s assume that we were wrong, and the stock return of Apple Inc. is instead an

MA(1) process:

Xt = 0.5Zt−1 + Zt.

Again, assume that the return on day t − 1 was 0% and that Zt−1 = 0%. On day t the

announcement of the new smart phone represents a positive shock on the stock return of

Apple Inc., Zt = 1%. The return on the announcement day is:

Xt =0.5Zt−1 + Zt

=0.5 · 0 + 1% = 1%.

On day t the return is exactly the same, i.e. 1%. Let’s again assume that over the next

couple of days there is no news that affects the return of Apple Inc., i.e. Zt+1 = Zt+2 =

Zt+3 = 0%:

Xt+1 = 0.5Zt + Zt+1 = 0.5 · 1% + 0 = 0.5%

Xt+2 = 0.5Zt+1 + Zt+2 = 0.5 · 0 + 0 = 0%

Xt+3 = 0.5Zt+2 + Zt+3 = 0.5 · 0 + 0 = 0%.
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The effect of the announcement, i.e. Zt = 1%, “dies out” much quicker in the MA(1)

process than in the AR(1) process.

Definition 3.5: MA(1) process

A time series {Xt}Tt=1 of the form:

Xt = c+ θZt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z is called a moving average process of order one, MA(1) for short.

The MA(1) process is stationary for any value of θ.

The MA(1) process (and also more in general the MA(q) process with finite q) is always

stationary. In fact, we can compute its expected value and variance to verify that they

are indeed not depended on time. The expected value is:

µ = E[Xt] = E[c+ θZt−1 + Zt]

= c+ θE[Zt−1] + E[Zt]

= c

and the variance is:

γ(0) = Var[Xt] = Var[c+ θZt−1 + Zt]

= θ2Var[Zt−1] + Var[Zt] + 2θCov[Zt−1, Zt]

= (1 + θ2)σ2
Z .
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We can compute γ(1) as follows:

γ(1) = Cov[Xt, Xt−1] =Cov[c+ θZt−1 + Zt, c+ θZt−2 + Zt−1]

=θ2Cov[Zt−1, Zt−2] + θCov[Zt−1, Zt−1]

+ θCov[Zt, Zt−2] + Cov[Zt, Zt−1]

=θσ2
Z .

Recall that since {Zt}Tt=1 is a collection of i.i.d. random variables, Cov[Zt, Zs] = 0 for

t 6= s. Similarly, we can compute γ(2):

γ(2) = Cov[Xt, Xt−2] =Cov[c+ θZt−1 + Zt, c+ θZt−3 + Zt−2]

=θ2Cov[Zt−1, Zt−3] + θCov[Zt−1, Zt−2]

+ θCov[Zt, Zt−3] + Cov[Zt, Zt−2]

=0.

It is easy to show that γ(h) = 0 for |h| ≥ 2. The ACF is then:

ρ(1) =
θ

1 + θ2

ρ(h) = 0 for |h| ≥ 2.

Mean, variance and autocovariance are not dependent on time. Notice that we obtained

these results without imposing any condition on the parameters.
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Definition 3.6: Moments of a MA(1) process

A MA(1) process of the form:

Xt = c+ θZt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z has the following moments:

µ = c

γ(h) =


(1 + θ2)σ2

Z if h = 0

θσ2
Z if |h| = 1

0 if |h| > 1

ρ(h) =


1 if h = 0

θ
1+θ2

if |h| = 1

0 if |h| > 1

Example 3.4: Moments of a MA(1) process

Consider the following MA(1) process:

Xt = 0.1 + 1.1Zt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

2.
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The moments of this process are as follows:

µ = 0.1

γ(h) =


(1 + 1.12) · 2 = 4.42 if h = 0

1.1 · 2 = 2.2 if |h| = 1

0 else

ρ(h) =


1.1

1+1.12
= 0.4977 if |h| = 1

0 else

3.2.2 The MA(2) process

We can add further lags to the moving average process. If we include two lags of the

i.i.d. random variable Zt, we obtain the so called moving average of order two (MA(2)

for short), see Definition 3.7. As for the MA(1) process, the MA(2) process is stationary

for any value of the coefficients.

Definition 3.7: MA(2) process

A time series {Xt}Tt=1 of the form:

Xt = c+ θ1Zt−1 + θ2Zt−2 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z is called a moving average process of order two, MA(2) for short.

The MA(2) process is stationary for any value of θ1 and θ2.
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The expected value of the MA(2) process is:

µ = E[Xt] =E[c+ θ1Zt−1 + θ2Zt−2 + Zt]

=c+ θ1E[Zt−1] + θ2E[Zt−2] + E[Zt]

=c+ θ10 + θ20 + 0

=c

and the variance is:

γ(0) = Var[Xt] =Var[c+ θ1Zt−1 + θ2Zt−2 + Zt]

=θ21Var[Zt−1] + θ22Var[Zt−2] + Var[Zt]

+ 2θ1Cov[Zt−1, Zt] + 2θ2Cov[Zt−2, Zt] + 2θ1θ2Cov[Zt−1, Zt−2]

=θ21σ
2
Z + θ22σ

2
Z + σ2

Z

=(1 + θ21 + θ22)σ
2
Z .

The ACF of the MA(2) can be calculated as follows. We start by computing γ(1):

γ(1) = Cov[Xt, Xt−1] =Cov[c+ θ1Zt−1 + θ2Zt−2 + Zt, c+ θ1Zt−2 + θ2Zt−3 + Zt−1]

=θ21Cov[Zt−1, Zt−2] + θ1θ2Cov[Zt−1, Zt−3] + θ1Cov[Zt−1, Zt−1]

+ θ2θ1Cov[Zt−2, Zt−2] + θ22Cov[Zt−2, Zt−3] + θ2Cov[Zt−2, Zt−1]

+ θ1Cov[Zt, Zt−2] + θ2Cov[Zt, Zt−3] + Cov[Zt, Zt−1]

=θ1Cov[Zt−1, Zt−1] + θ2θ1Cov[Zt−2, Zt−2]

=θ1σ
2
Z + θ2θ1σ

2
Z

=(θ1 + θ1θ2)σ
2
Z .

102



Introduction to Time Series Econometrics v0.1

Next, we compute γ2:

γ(2) = Cov[Xt, Xt−2] =Cov[c+ θ1Zt−1 + θ2Zt−2 + Zt, c+ θ1Zt−3 + θ2Zt−4 + Zt−2]

=θ21Cov[Zt−1, Zt−3] + θ1θ2Cov[Zt−1, Zt−4] + θ1Cov[Zt−1, Zt−2]

+ θ2θ1Cov[Zt−2, Zt−3] + θ22Cov[Zt−2, Zt−4] + θ2Cov[Zt−2, Zt−2]

+ θ1Cov[Zt, Zt−3] + θ2Cov[Zt, Zt−4] + Cov[Zt, Zt−2]

=θ2Cov[Zt−2, Zt−2]

=θ2σ
2
Z .

For γ(3) we obtain:

γ(3) = Cov[Xt, Xt−3] =Cov[c+ θ1Zt−1 + θ2Zt−2 + Zt, c+ θ1Zt−4 + θ2Zt−5 + Zt−3]

=θ21Cov[Zt−1, Zt−4] + θ1θ2Cov[Zt−1, Zt−5] + θ1Cov[Zt−1, Zt−3]

+ θ2θ1Cov[Zt−2, Zt−4] + θ22Cov[Zt−2, Zt−5] + θ2Cov[Zt−2, Zt−3]

+ θ1Cov[Zt, Zt−4] + θ2Cov[Zt, Zt−5] + Cov[Zt, Zt−3]

=0.

Similarly, it is easy to show that γ(h) = 0 for |h| ≥ 3. In the case of the MA(1) we found

that observations more than one lag apart are uncorrelated. For the MA(2) process

we have now seen that observations more than two lags apart are uncorrelated. This

pattern generalizes also to MA(q) process and formalizes the property that for moving

average processes the effect of past innovations “dies out” quicker than for autoregressive

processes.
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Definition 3.8: Moments of a MA(2) process

A MA(2) process of the form:

Xt = c+ θ1Zt−1 + θ2Zt−2 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z has the following moments:

µ = c

γ(h) =



(1 + θ21 + θ22)σ
2
Z if h = 0

(θ1 + θ1θ2)σ
2
Z if |h| = 1

θ2σ
2
Z if |h| = 2

0 if |h| > 2

ρ(h) =



1 if h = 0

θ1+θ1θ2
1+θ21+θ

2
2

if |h| = 1

θ2
1+θ21+θ

2
2

if |h| = 2

0 if |h| > 2

3.2.3 The MA(q) process

As for the autoregressive process, we can generalize the moving average processes to any

order q. The MA(q) process is formally defined in Definition 3.9.
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Definition 3.9: MA(q) process

A time series {Xt}Tt=1 of the form:

Xt = c+

q∑
i=1

θiZt−i + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z is called a moving average process of order q, MA(q) for short.

The MA(q) process is stationary for any value of θi, i = 1, . . . , q.

In order to compute mean, variance and ACF of the MA(q) process we can use the

properties reviewed in Section 2.1.2. The expected value is:

µ = E[Xt] =E[c+

q∑
i=1

θiZt−i + Zt]

=c+

q∑
i=1

θiE[Zt−i] + E[Zt]

=c.

The variance of the process is:

γ(0) = Var[Xt] =Var

[
c+

q∑
i=1

θiZt−i + Zt

]

=Var

[
q∑
i=1

θiZt−i + Zt

]

=Var

[
q∑
i=0

θiZt−i

]
(where θ0 = 1)

=

q∑
i=0

q∑
j=0

θiθjCov[Zt−i, Zt−j]

=σ2
Z + θ21σ

2
Z + θ22σ

2
Z + · · ·+ θ2qσ

2
Z

=σ2
Z

(
1 +

q∑
i=1

θ2i

)
.

We can use the properties of the covariance to compute the autocovariance at any lag
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h:

γ(h) =Cov[Xt, Xt−h]

=Cov

[
c+

q∑
i=1

θiZt−i + Zt, c+

q∑
j=1

θjZt−h−j + Zt−h

]

=Cov

[
q∑
i=1

θiZt−i + Zt,

q∑
j=1

θjZt−h−j + Zt−h

]

=Cov

[
q∑
i=0

θiZt−i,

q∑
j=0

θjZt−h−j

]

=

q∑
i=0

q∑
j=0

θiθjCov[Zt−i, Zt−h−j].

Now we know that Cov[Zt−i, Zt−h−j] = σ2
Z when t− i = t− h− j and zero otherwise. So

we can simplify the autocovariance as:

γ(h) =


σ2
Z

∑q−|h|
i=0 θiθi+|h| if |h| ≤ q

0 if |h| > q

where θ0 = 1.

You can verify that for h = 0 we obtain the variance and for q = 1 and q = 2 we obtain

the autocovariance for the MA(1) and MA(2) processes, respectively. Moreover, we have

that for h > q γ(h) = 0. The ACF is then:

ρ(h) =


∑q−|h|

i=0 θiθi+|h|
1+

∑q
i=1 θ

2
i

if |h| ≤ q

0 if |h| > q.
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Definition 3.10: Moments of a MA(q) process

A MA(q) process of the form:

Xt = c+

q∑
i=1

θiZt−i + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z has the following moments:

µ = c

γ(h) =


σ2
Z

∑q−|h|
i=0 θiθi+|h| if |h| ≤ q

0 if |h| > q

ρ(h) =


∑q−|h|

i=0 θiθi+|h|
1+

∑q
i=1 θ

2
i

if |h| ≤ q

0 for |h| > q

where θ0 = 1.

3.2.4 Invertibility

We have seen that we need to impose some restrictions on the coefficients of an autore-

gressive process to be stationary. These conditions ensure that we can represent an AR(p)

process as an MA(∞) process. For the MA(q) process we do not need any condition on

the coefficients to ensure that the time series is stationary. There are however certain

conditions that we can impose on the coefficients to ensure that we could represent any

MA(q) process as an AR(∞) process. If a MA(q) process satisfies these conditions, we

say that it is invertible. In this course we are not going to further discuss the concept

of invertibility. If you are interested, you can find more details about this concept in

Shumway and Stoffer (2017, pp. 83-85).
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3.3 The ARMA model

3.3.1 The ARMA(1,1) process

We do not need to limit a time series to either be an autoregressive or a moving aver-

age process. In fact, a time series can be a mix of both processes: the autoregressive

moving average process (ARMA for short). For example, the following time series is an

ARMA(1,1):

Xt = 0.1 + 0.5Xt−1 + 1.1Zt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z .

Today’s value of the time series is influenced by three components: (1) yesterday’s value of

the time series, (2) today’s unexpected “news” Zt, and (3) yesterday’s unexpected “news”

Zt−1. Notice that here Zt−1 influences Xt through two different channels: directly and

indirectly through Xt−1.

Since a MA(1) process is always stationary, whether the ARMA(1,1) process is stationary

or not depends only from the parameter φ. In other words, we check for stationarity

using the same conditions as for an autoregressive process. Definition 3.11 summarizes

this idea.
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Definition 3.11: ARMA(1,1) process

A time series {Xt}Tt=1 of the form:

Xt = c+ φXt−1 + θZt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z is called an autoregressive moving average process of order one-one, ARMA(1,1)

for short.

For an ARMA(1,1) process we have that:

• if |φ| < 1: the process is stationary and causal,

• if |φ| > 1: the process is stationary but not causal,

• if |φ| = 1: the process is not stationary.

The mean of a stationary ARMA(1,1) process is:

µ = E[Xt] =E[c+ φXt−1 + θZt−1 + Zt]

=c+ φE[Xt−1] + θE[Zt−1] + E[Zt]

=c+ φµ

⇔ µ =
c

1− φ
.

In order to compute the autocovariance of the ARMA(1,1) process, we have to first

compute Cov[Zt−1, Xt−1]:

Cov[Zt−1, Xt−1] =Cov[Zt−1, c+ φXt−2 + θZt−2 + Zt−1]

=φCov[Zt−1, Xt−2] + θCov[Zt−1, Zt−2] + Cov[Zt−1, Zt−1]

=Cov[Zt−1, Zt−1] = σ2
Z .
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We can then proceed and compute γ(0):

γ(0) = Var[Xt] =Var[c+ φXt−1 + θZt−1 + Zt]

=φ2Var[Xt−1] + θ2Var[Zt−1] + Var[Zt]

+ 2φθCov[Xt−1, Zt−1] + 2φCov[Xt−1, Zt] + 2θCov[Zt−1, Zt]

=φ2γ(0) + θ2σ2
Z + σ2

Z + 2φθCov[Xt−1, Zt−1]

=φ2γ(0) + θ2σ2
Z + σ2

Z + 2φθσ2
Z

⇔ (1− φ2)γ(0) =(1 + θ2 + 2φθ)σ2
Z

γ(0) =
1 + θ2 + 2φθ

1− φ2
σ2
Z

where we used the fact that the time series is stationary (Var[Xt] = Var[Xt−1] = γ(0)), the

fact that future values of Zt are independent from past values of Xt (Cov[Zt, Xt−1] = 0),

and that Zt are i.i.d. (Cov[Zt, Zt−1] = 0).

We can compute γ(1) as follows:

γ(1) = Cov[Xt, Xt−1] =Cov[c+ φXt−1 + θZt−1 + Zt, Xt−1]

=φCov[Xt−1, Xt−1] + θCov[Zt−1, Xt−1] + Cov[Zt, Xt−1]

=φγ(0) + θσ2
Z

=φ
1 + θ2 + 2φθ

1− φ2
σ2
Z + θσ2

Z

=
φ+ φθ2 + 2φ2θ

1− φ2
σ2
Z + θσ2

Z

=
φ+ φθ2 + 2φ2θ + θ − φ2θ

1− φ2
σ2
Z

=
(1 + θφ)(θ + φ)

1− φ2
σ2
Z .
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Next, we compute γ(2):

γ(2) = Cov[Xt, Xt−2] =Cov[c+ φXt−1 + θZt−1 + Zt, Xt−2]

=φCov[Xt−1, Xt−2] + θCov[Zt−1, Xt−2] + Cov[Zt, Xt−2]

=φγ(1)

=
(1 + θφ)(θ + φ)

1− φ2
φσ2

Z .

It is easy to generalize this pattern to any lag h:

γ(h) =
(1 + θφ)(θ + φ)

1− φ2
φ|h|−1σ2

Z for |h| ≥ 1.

Similarly, we can derive the ACF of an ARMA(1,1) process:

ρ(h) =
(1 + θφ)(θ + φ)

1 + θ2 + 2φθ
φ|h|−1 for |h| ≥ 1.

Definition 3.12: Moments of an ARMA(1,1) process

An ARMA(1,1) process of the form:

Xt = c+ φXt−1 + θZt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z has the following moments:

µ =
c

1− φ

γ(h) =


1+θ2+2φθ

1−φ2 σ2
Z if h = 0

(1+θφ)(θ+φ)
1−φ2 φ|h|−1σ2

Z for |h| ≥ 1

ρ(h) =


1 if h = 0

(1+θφ)(θ+φ)
1+θ2+2φθ

φ|h|−1 for |h| ≥ 1.
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Notice that by setting θ = 0 we obtain the same results as for the AR(1) process, and by

setting φ = 0 we obtain the same results as for the MA(1) process.

Example 3.5: Moments of an ARMA(1,1) process

Consider the following ARMA(1,1) process:

Xt = 1 + 0.5 ·Xt−1 + 0.5 · Zt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

1.

The time series is stationary since |φ| = 0.5 < 1. Its moments are:

µ =
1

1− 0.5
= 2

γ(0) =
1 + 0.52 + 2 · 0.5 · 0.5

1− 0.52
=

7

3

γ(h) =
(1 + 0.5 · 0.5)(0.5 + 0.5)

1− 0.52
0.5|h|−1 =

5

3
0.5|h|−1 for |h| ≥ 1

ρ(h) =
γ(h)

γ(0)
=

5

7
0.5|h|−1 for |h| ≥ 1.

3.3.2 The ARMA(p,q) process

As for the AR and MA processes, we can generalize the ARMA process to any autore-

gressive and moving average order. We refer to this time series process as ARMA(p,q),

where p is the autoregressive order and q is the moving average order. To check if an

ARMA(p,q) is stationary, we use the same conditions on the coefficients of an AR(p)

process. The variance and autocovariance of an ARMA(p,q) for p > 1 and/or q > 1 are

quite difficult and time-consuming to compute and we therefore do not cover them in this

course.
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Definition 3.13: ARMA(p,q) process

A time series {Xt}Tt=1 of the form:

Xt = c+

p∑
i=1

φiXt−i +

q∑
j=1

θjZt−j + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z is called an autoregressive moving average process of order p-q, ARMA(p,q) for

short.

An ARMA(p,q) is stationary whenever its autoregressive part is stationary.

3.4 Finding the appropriate model

3.4.1 ARMA models in R

When we have data of a stationary time series, we would like to estimate the coefficients

of the process. We can use R’s built-in function arima() to estimate the coefficients of

an ARMA(p,q) process:

arima(x, order = c(p, 0, q))

where x is a time series, and p and q are the autoregressive and the moving average order,

respectively. Note that the input order has to be a vector of length 3. The first and

the last entry of this vector define the autoregressive and moving average orders. The

second entry is only relevant for so called ARIMA models, which we are not covering

in this course. You can therefore always leave the second entry of this vector equal to

zero.
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Example 3.6: Fitting an ARMA(1,1) on the earnings of Johnson & John-

son

Let’s consider once again the log quarterly earnings of Johnson & Johnson. We have

seen that after taking the natural logarithm the data has an additive decomposi-

tion:

Yt = Tt + St +Xt.

For brevity, I avoid writing the log-symbol in front of each component. The following

plot depicts the log quarterly earnings per share.

Figure 3.5: Plot of the quarterly log earnings per share of Johnson & Johnson

From a graphical analysis of the time series, we can assume that there is a linear

trend and a seasonal pattern with a quarterly frequency. We can therefore write the

time series of log earnings Yt as:

Yt = a0 + a1 · t+ s1 · 1(t=1,5,... ) + s2 · 1(t=2,6,... ) + s3 · 1(t=3,7,... ) + s4 · 1(t=4,8,... ) +Xt.

In Chapter 1 we have seen how we can estimate the seasonal and the trend compo-

nents. To do this in R we have to first define a data frame with the relevant variables:

the log quarterly earnings, dummy variables for each quarter and a time index:
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# Create a data frame that allows us to estimate trend and

# seasonality:

trendseason_df <-

data.frame(earn=jj_log_earnings ,

s1= rep(c(1,0,0,0), length(jj_log_earnings )/4),

s2= rep(c(0,1,0,0), length(jj_log_earnings )/4),

s3= rep(c(0,0,1,0), length(jj_log_earnings )/4),

s4= rep(c(0,0,0,1), length(jj_log_earnings )/4),

tt = time(jj_log_earnings ))

The first rows of this data frame look as follows:

>head(trendseason_df)

earn s1 s2 s3 s4 tt

1 -0.3424903 1 0 0 0 1960.00

2 -0.4620355 0 1 0 0 1960.25

3 -0.1625189 0 0 1 0 1960.50

4 -0.8209806 0 0 0 1 1960.75

5 -0.4942963 1 0 0 0 1961.00

6 -0.3710637 0 1 0 0 1961.25

We can then run the regression and transform the estimates to obtain the parameters

of interest:

# Estimate the parameters: run without intercept

trendseason_reg <- lm(earn ~ tt + s1 + s2 + s3 + s4 -1,

data = trendseason_df)

# Define a0:

a0 <- mean(coef(trendseason_reg)[c("s1", "s2", "s3", "s4")])

# Get a1:

a1 <- coef(trendseason_reg)["tt"]

# Define the seasonal components:

season_components <-

coef(trendseason_reg)[c("s1", "s2", "s3", "s4")] - a0

# Get the residual component:

x <- jj_log_earnings - fitted(trendseason_reg)
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We obtain â0 = −328.29, â1 = 0.17, ŝ1 = 0.011, ŝ2 = 0.039, ŝ3 = 0.109 and

ŝ4 = −0.159. Using these estimates we can remove trend and seasonal components

and obtain the remainder term:

X̂t = Yt − â0 − â1 · t− ŝ1 · 1(t=1,5,... ) − ŝ2 · 1(t=2,6,... ) − ŝ3 · 1(t=3,7,... ) − ŝ4 · 1(t=4,8,... )

The following plot shows the remainder component graphically:

Figure 3.6: Plot of the remainder component of the quarterly log earnings per share
of Johnson & Johnson

We know want to model the remainder component X̂t as an ARMA(1,1) process. In

other words, we assume that the remainder component looks as follows:

X̂t = c+ φX̂t−1 + θZt−1 + Zt

and we would like to estimate c, φ, θ and σ2
Z . In R we can use the function arima to

estimate the parameters of interest:
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# Fit an ARMA(1,1) model on the reminder term:

arma11 <- arima(x, order = c(1, 0, 1))

# Coefficients:

print(arma11$coef)

# Variance of Z:

print(arma11$sigma2)

The estimates are ĉ = 0, φ̂ = 0.924, θ̂ = −0.689 and σ̂2
Z = 0.011. In summary,

we have found that the log quarterly earnings per share of Johnson & Johnson are

described by the following process:

Yt =− 328.29 + 0.17 · t

+ 0.011 · 1(t=1,5,... ) + 0.039 · 1(t=2,6,... ) + 0.109 · 1(t=3,7,... ) − 0.159 · 1(t=4,8,... )

+ 0.924Xt−1 − 0.689 · Zt−1 + Zt

where E[Zt] = 0 and Var[Zt] = 0.011.

3.4.2 Comparing models

In the last example I simply assumed that the ARMA(1,1) process is the most “suitable”

process to describe the remainder component of the log earnings of Johnson & Johnson.

But what if in fact an AR(1) is more appropriate? Or a MA(1)? More in general, how

can I determine which model is most appropriate for my time series?

In econometrics we generally want a model to fit the data “well” using as few parameters

as possible. We therefore need to introduce the concept of “fitting the data well”. In

general, the predicted data should be as close as possible to the observed data. For

example, if we model a time series as an AR(1) process, conditional on the observations
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up to day t, the expected value for t+ 1 is:

E[Xt+1|Xt, Xt−1, Xt−2, Xt−3, . . . ] =E[c+ φXt + Zt+1|Xt, Xt−1, Xt−2, Xt−3, . . . ]

=c+ φXt.

The model is “fitting the data well” if this prediction is close to the actual value Xt+1,

i.e. if Xt+1 − c − φXt is close to zero. Since this difference can be positive or negative,

we usually compute the squared difference and summarize it by taking the average over

all t = 1, 2, . . . , T − 1:

MSE =
1

T

T−1∑
t=1

(Xt+1 − c− φXt)
2

where MSE stands for mean squared error. In more general terms, the MSE is defined as

follows.

Definition 3.14: Mean squared error

The MSE of a model is defined as the average of the squared difference between

the one-period prediction and the observed time series:

MSE =
1

T

T−1∑
t=1

(Xt+1 − E[Xt+1|Ft])2 .

A model fits the data well if the MSE is low. However, an AR(2) has always a lower

MSE than an AR(1). And an AR(3) has a lower MSE than an AR(2). In fact, the more

parameter we add the lower the MSE becomes. In practice, we would like the model to

have as few parameters as possible. In time series econometrics it is therefore common to

choose models based on so called information criteria: these measures penalize models

that include too many parameters. One of the most widely used information criterion is

the Akaike’s Information Criterion (AIC).
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Definition 3.15: Akaike’s Information Criterion (AIC)

The AIC of a time series model with k parameters and T observations is defined

as:

AIC = T · log(MSE) + 2 · k

The lower the AIC, the better the model. The main idea is that, to reduce the AIC we

want to have a low MSE but also a low number of parameters. For example, an AR(1)

might have a higher MSE than an AR(2), but it has also less parameters. More precisely,

an AR(1) has three parameters (c, φ, σ2
Z) and an AR(2) has four parameters (c, φ1, φ2,

σ2
Z). A more conservative information criterion is the Bayesian Information Criterion

(BIC).

Definition 3.16: Bayesian Information Criterion (BIC)

The BIC of a time series model with k parameters and T observations is defined

as:

BIC = T · log(MSE) + log(T ) · k

The lower the BIC, the better the model. Which of the two criteria you use is a matter

of choice. The BIC criterion penalizes the number of parameters more than the AIC:

while the AIC multiplies the number of parameters k by 2, the BIC multiplies k by

log(T ). In other words, comparing different model specifications with the BIC leads to

more parsimonious models (fewer parameters).

In textbooks and programming languages, you might find different definitions of AIC and

BIC. For example, Shumway and Stoffer (2017) divide AIC and BIC by the number of

observations T . In R, the functions AIC() and BIC() add the constant T · (log(2π) + 1)

to the information criteria (which comes from the likelihood function of a normal distri-

bution). Since we use AIC and BIC as relative measures, rescaling or adding constants

does not change which model has the lowest criterion.
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Example 3.7: AIC for the earnings of Johnson & Johnson

Consider again the previous example where we fitted an ARMA(1,1) on the remainder

component of the log earnings of Johnson & Johnson. We can compute the AIC of

this model as follows:

# Fit an ARMA(1,1) model on the reminder term:

arma11 <- arima(x, order = c(1, 0, 1))

# Number of observations:

nobs <- length(x)

# Number of parameters:

k_arama11 <- 2+1+1

# MSE:

mse_arma11 <- mean(arma11$residuals^2)

# Compute AIC:

aic_arma11 <- nobs*log(mse_arma11) + 2*k_arama11

The AIC of the ARMA(1,1) is -368.36. We are now interested to know, if an

ARMA(2,1) fits the data better than the ARMA(1,1). To this end, we start by

fitting an ARMA(2,1) and the compute the AIC:

# Fit an ARMA(2,1) model on the reminder term:

arma21 <- arima(x, order = c(2, 0, 1))

# Number of parameters:

k_arama21 <- 3+1+1

# MSE:

mse_arma21 <- mean(arma21$residuals^2)

# Compute AIC:

aic_arma21 <- nobs*log(mse_arma21) + 2*k_arama21

The AIC of this model is -371.56. We would therefore prefer the second model over

the first one, since the AIC is lower in this case.

In the last example, we just compared two specifications: an ARMA(1,1) and an

ARMA(2,1). In practice, it is common to compare several different specifications and

then select the one with the lowest AIC or BIC. In more detail, we define a maximal
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value of the order of the process we are willing to consider (pmax and qmax), and then

estimate ARMA(p,q) for all possible combinations of p = 1, . . . , pmax and q = 1, . . . , qmax.

For all specifications we also consider including or excluding the constant c. Recall that

a time series with expected value equal zero has c = 0. By setting c = 0, we have one

parameter less to estimate.

For example, let’s fix pmax = 2 and qmax = 2. We then proceed as follows:

1. Estimate ARMA(0,0) and compute the AIC.

2. Estimate ARMA(0,0) with c = 0 and compute the AIC.

3. Estimate ARMA(1,0) and compute the AIC.

4. Estimate ARMA(1,0) with c = 0 and compute the AIC.

5. Estimate ARMA(0,1) and compute the AIC.

6. Estimate ARMA(0,1) with c = 0 and compute the AIC.

7. Estimate ARMA(1,1) and compute the AIC.

8. Estimate ARMA(1,1) with c = 0 and compute the AIC.

...

17. Estimate ARMA(2,2) and compute the AIC.

18. Estimate ARMA(2,2) with c = 0 and compute the AIC.

We select the specification of p, q and c that minimizes the AIC. This procedure is quite

time-consuming if done by hand. Luckily, the R-package forecast provides the function

auto.arima() which automatically computes the information criterion for all possible

model specifications:

auto.arima(x, max.p = 5, max.q = 5, d=0, D=0, seasonal=FALSE, ic = "aic")

where x is the time series, max.p and max.q define the maximal autoregressive and moving

average order and ic should either be “aic” or “bic”, depending on which information

criterion you want to use. The function auto.arima() can compare also other more
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advanced models that we do not cover in this course: to ensure that we only compare

ARMA(p,q) processes, we set the parameters d and D to zero and the parameter seasonal

to FALSE.

Example 3.8: Best model for the earnings of Johnson & Johnson

To determine the “best” model in terms of AIC for the remainder term of the log

earnings of Johnson & Johnson we run the following code:

library(forecast)

# Determine the best model in terms of AIC:

best_aic <- auto.arima(x, d=0, D=0, seasonal=FALSE , ic = "aic")

print(best_aic)

from which we obtain:

Series: x

ARIMA(2,0,5) with zero mean

Coefficients:

ar1 ar2 ma1 ma2 ma3 ma4 ma5

-0.0938 0.8087 0.3563 -0.5798 -0.3807 0.4366 0.4797

s.e. 0.1031 0.0916 0.1288 0.1150 0.1121 0.0961 0.1006

sigma^2 estimated as 0.007746: log likelihood=86.96

AIC=-157.92 AICc=-156 BIC=-138.47

The specification with the lowest AIC is an ARMA(2,5) with c = 0. Similarly, we

can obtain the best specification in terms of BIC:

# Determine the best model in terms of BIC:

best_bic <- auto.arima(x, d=0, D=0, seasonal=FALSE , ic = "bic")

print(best_bic)

from which we obtain:
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Series: x

ARIMA(2,0,1) with zero mean

Coefficients:

ar1 ar2 ma1

-0.3990 0.5379 0.7700

s.e. 0.1086 0.0967 0.0785

sigma^2 estimated as 0.01104: log likelihood=71.1

AIC=-134.2 AICc=-133.69 BIC=-124.48

The specification with the lowest BIC is an ARMA(2,1) with c = 0. As mentioned

previously, using BIC to determine the best specification leads to more parsimonious

models, i.e. models with less parameters.

3.5 Summary

In this chapter we have learned what type of models can be used to describe the remainder

term of a time series. After dealing with the trend and seasonal components, we can

model the stationary remainder component as an ARMA(p,q) process. Using information

criteria, we can determine the best specification for the remainder component.

We now know how to model the three components of a time series. In the final chapter of

this script we will learn how we can check if the remainder component is stationary and

what we can do if it is not. Moreover, we will learn how to forecast time series data.
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Time series Yt

Plot the time series data (Section 1.5):
Trend: linear, quadratic, ... (determine n)

Seasonality: weekly, quarterly, ... (determine s)

Estimate the trend and seasonal
components (Section 1.5.2)

Remove the trend and seasonal
components (Section 1.5.3)

Analyze the remainder term: is it stationary?
Test for the presence of a unit-root (Section 4.1).

Yes

No

Take first difference

Fit ARMA model:
find optimal p and q in terms of AIC or BIC

Figure 3.7: Diagram of the time series analysis procedure
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3.6 Exercises

Exercise 3.1. Using Definition 3.10, compute γ(h) and ρ(h) for the MA(1) and MA(2)

processes.

Exercise 3.2. Consider the ARMA(2,1):

Xt = 10 + 0.25Xt−1 + 0.5Xt−1 − 0.5Zt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = 1.

(i) Check if the time series is stationary.

(ii) Compute µ.

Exercise 3.3. Consider the ARMA(1,1):

Xt = −2− 0.9Xt−1 + 1.5Zt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = 1.

(i) Check if the time series is stationary.

(ii) Compute µ and γ(h) for h = 0, 1, 2, 3.

Exercise 3.4. Consider the AR(2):

Xt = 10 + 0.25Xt−1 + 0.5Xt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = 1.

(i) Check if the time series is stationary.

(ii) Compute µ and γ(h) for h = 0, 1, 2, 3.

Exercise 3.5. Consider the following time series:

Yt = Tt +Xt = 0.1 + 0.5 · t+ Zt
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where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z.

Apply the appropriate difference operator to remove the trend. What type of process does

the differenced time series follow? Compute the expected value, variance, and ACF for

h = 1, 2, 3 of the differenced time series.

Exercise 3.6. Consider the following time series:

Yt =St +Xt = St + Zt

St =St−2

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z.

Apply the appropriate difference operator to remove the seasonality. What type of process

does the differenced time series follow? Compute the expected value, variance, and ACF

for h = 1, 2, 3 of the differenced time series.

Exercise 3.7. (Difficult) Consider the time series:

Xt = 0.5Xt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = 2.

Unfortunatly we do not directly observe {Xt}Tt=1, but only {Yt}Tt=1:

Yt = Xt +Wt

where {Wt}Tt=1 is a collection of i.i.d. random variables with E[Wt] = 0 and Var[Wt] = 1.

You can think of Wt as some measurement error that affects your data. This measurement

error is independent from the actual time series {Xt}Tt=1.

Is the time series {Yt}Tt=1 stationary? Compute E[Yt], Var[Yt], Cov[Yt, Yt−1], Cov[Yt, Yt−2].

Exercise 3.8. Using R, find the best model in terms of AIC for the time series of monthly

pneumonia and influenza deaths in the U.S. (dataset flu in the package “astsa”). In
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particular:

(i) Plot the time series data.

(ii) Based on the plot, define an appropriate model for the trend and seasonal components.

(iii) Estimate the parameters of the trend and seasonal components using OLS.

(iv) Determine the remainder component. (v) Find the best ARMA(p,q) specification for

the remainder component.

Remember that you have done steps (i)-(iii) already in the exercises of Chapter 1.
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CHAPTER

FOUR

THE COMPLETE APPROACH: FROM RAW DATA TO

FORECASTS

In this chapter we will first learn how to formally test if a process is a random walk. Next,

we will cover the basic procedure to obtain a forecast from the time series models that

we covered in the previous chapters. Finally, we will put all learned concepts together to

analyze and predict a time series.

The relevant chapters in the main references to this script are:

• Chapter 8.1 and 8.8 in Forecasting: principles and practice (Hyndman & Athana-

sopoulos, 2018),

• Chapter 3.4 and 5.2 in Time Series Analysis and Its Applications: With R Examples

(Shumway & Stoffer, 2017).

4.1 Non-stationary time series

We have seen that a time series with a trend and/or a seasonal component is not sta-

tionary. We have learned how we can deal with this components. But how can we be
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sure that the reminder component Xt is actually stationary? Let’s assume that Xt is an

AR(1) process:

Xt = c+ φXt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z .

We have seen that when φ = 1, then the process is not stationary. In fact, if φ = 1, the

process is a random walk process. An AR(1) with φ is said to have a unit root. A straight

forward test would be to estimate the AR(1) process and test the null hypothesis that

the process is not stationary, i.e. H0 : φ = 1, against the alternative that the process is

stationary, i.e. Ha : |φ| < 1.

Note that we focus here only on testing the null hypothesis that φ = 1. Technically, if

φ = −1 we would also have a non-stationary time series. In practice, this case is very

rare and the test developed in the literature focus on the null hypothesis H0 : φ = 1.

One can however modify the test procedures described in the following to test the null

hypothesis H0 : φ = −1.

This is the main idea of the Dickey-Fuller test. In their test, rather than directly esti-

mating the above AR(1) process, they first subtract Xt−1 from both sides:

Xt −Xt−1 = c+ φXt−1 −Xt−1 + Zt

∆Xt = c+ (φ− 1)Xt−1 + Zt

∆Xt = c+ γXt−1 + Zt.

We can then regress the differenced time series on the lagged value of the time series and

test the null hypothesis that the process is a random walk, that is H0 : γ = 0. The main

idea is as in classical regression analysis: we construct a test statistic for this hypothesis

by appropriately standardizing γ̂. When the test statistic falls below a certain threshold

(critical value), we reject the null hypothesis. The reason that the test statistic has to be

lower than a certain threshold is that under the alternative hypothesis |φ| < 1, φ− 1 will

be negative, and the smaller it is, the more we are sure that the process is not a random
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walk.

While in standard econometrics the test statistic is asymptotically normally distributed,

here this is not the case. In fact, we have to relay on simulated critical values to determine

if we reject the null hypothesis or not. Note that for this course it is not important that

you know how we can obtain this critical values or how the test statistic is exactly

distributed. Just keep in mind that you cannot use the critical values from the normal

distribution or the student t-distribution.

The reason for not directly estimating the AR(1) process, but rather regress the differ-

enced series on the lagged value, is that in case the null hypothesis is true (φ = 1), the

differenced time series is stationary.

In summary, assuming you have a time series that has no trend and no seasonal com-

ponent, when testing if an AR(1) process is a random walk you would proceed as fol-

lows:

1. Estimate the following regression:

∆Xt = c+ γXt−1 + Zt

and obtain estimates ĉ and γ̂, as well as their respective t-statistics tĉ and tγ̂.

2. The null hypothesis is that the process is a random walk, i.e. H0 : γ = 0.

3. If tγ̂ < −2.89 we reject the null hypothesis that the process is a random walk at the

5% significance level. If tγ̂ < −3.51 we reject the null hypothesis that the process

is a random walk at the 5% significance level.

4. If tγ̂ > −2.89 we cannot reject the null hypothesis. We conclude that the process is

a random walk. Since the time series has no trend, we can also conclude that c = 0

(recall that a random walk with drift has a time trend).

Note that these critical values are for a sample of size 100, i.e. you have a time series of

100 observations. Table 4.1 reports the critical values for different sample sizes.
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Table 4.1: Critical values of the (augmented)
Dickey-Fuller test

Significance level

Number of observations 1% 5%

T = 25 -3.75 -3.00
T = 50 -3.58 -2.93
T = 100 -3.51 -2.89
T = 250 -3.46 -2.88
T = 500 -3.44 -2.87
T = ∞ -3.43 -2.86

Note: The table reports the critical values for the
Dickey-Fuller test of the form ∆Xt = c + γXt−1 +∑p−1

j=1 ψj∆Xt−j +Zt for the null hypothesis H0 : γ =
0.

Example 4.1: Dickey-Fuller test of the UK unemployment rate

Let us investigate if the annual unemployment rate of the UK is stationary. I obtained

the data from the website of the Federal Reserve Bank of St.Louis (https://fred

.stlouisfed.org/series/UNRTUKA). We can load the data into R and plot it by

running the following commands:

# Set your working directory (tell R from which folder you

# are working from):

setwd("path/to/your/folder")

# load the data (note that the csv file should be in the folder

# you are working from):

unemp_rate_raw <- read.csv(file = "unemp_rate_uk.csv")

# define the time series:

unemp_rate <- ts(unemp_rate_raw$UNRTUKA , start = 1760,

frequency = 1)

# plot the data

plot(unemp_rate , type=’l’, main=’’,

ylab=’Annual unemployment rate in %’)

# add grid lines for better readability

grid()
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Figure 4.1: Annual unemployment rate of the UK (in %)

We do not see any specific trend and/or seasonal pattern in this data. But can we

conclude that it is stationary? If think that the data is best described by an AR(1),

we could start by estimating its coefficients:

# estimate AR(1) process:

ar <- arima(unemp_rate , order = c(1,0,0))

print(ar)

and we obtain a coefficient φ̂ = 0.87, which is close to 1 and we are worried that the

process might in fact be a random walk. We can test the null hypothesis that the

time series is a random walk by following the procedure described previously.

We have to first estimate the regression:

∆Xt = c+ γXt−1 + Zt

where Xt is the unemployment rate in year t. We therefore start by defining a lagged

and a differenced version of our time series:
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# define the number of observations:

n <- length(unemp_rate)

# define the differenced time series and the lagged time series

delta_x <- diff(unemp_rate)

x_lag <- unemp_rate[-n]

Next, we can estimate the regression of interest:

# we can check if this time series is stationary by running

# the following regression:

reg_df <- lm(delta_x ~ x_lag)

summary(reg_df)

The estimated coefficients are γ̂ = −0.127 and ĉ = 0.712. Moreover, the t-statistic

of γ̂ is tγ̂ = −4.170 which clearly is below the critical threshold of −3.46 (we have

257 observations, so use the critical values for a sample size of 250). We therefore

reject the null hypothesis at the 1% significance level and conclude that the process

is stationary.

We can generalize this testing procedure to the more general case where we have an

AR(p) model and would like to test the null hypothesis that it is not stationary. This

type of test is called the augmented Dickey-Fuller test. Consider the following AR(p)

process:

Xt = c+

p∑
i=1

φiXt−i + Zt

To test the null hypothesis that the AR(p) process is not stationary, we run the following

regression:

∆Xt = c+ γXt−1 +

p−1∑
j=1

ψj∆Xt−j + Zt

where γ =
∑p

i=1 φi − 1 and ψj = −
∑p

i=j+1 φi. We proceed in the same way as before.

The null hypothesis is H0 : γ = 0 and we test it by estimating the above regression and

comparing the t-statistic tγ̂ to the critical values.

We can compute this test procedure easily in R. I recommend using the following function
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from the package urca:

ur.df(x, type = "drift", selectlags="AIC")

where x is the time series we are testing, type defines the type of test we are conducting,

and selectlags specifies the approach used to determine what type of process you are

dealing with (either “AIC” or “BIC”). Note that the procedure described in this script

always uses type = "drift". By setting selectlags="AIC", the function determines

automatically the optimal number of lags of the time series to include in an augmented

Dickey-Fuller test based on the Akaike information criterion. Alternatively, you can set

type = "Fixed" and specify manually the number of lags, e.g. lags = 1.

Example 4.2: Augmented Dickey-Fuller test of the UK unemployment

rate

Let us consider the possibility that under the alternative hypothesis the unemploy-

ment rate is not necessarily an AR(1). In other words, we analyze the stationarity of

the time series using the augmented Dickey-Fuller test. For convenience, we use the

R function ur.df from the package urca:

# load the package:

library(urca)

# compute the ADF test:

test <- ur.df(unemp_rate , type = "drift", selectlags = "AIC")

summary(test)

The procedure includes one lag in the augmented Dickey-Fuller test, i.e. it estimates

the following regression:

∆Xt = c+ γXt−1 + ψ1∆Xt−1 + Zt

and tests the null hypothesis H0 : γ = 0 against the alternative that the time series

follows a stationary AR(2) process. The estimate is γ̂ = −0.148 and the respective

t-statistic is tγ̂ = −4.74. Since tγ̂ < −3.46 we can reject the null hypothesis in favor

of the alternative.
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If we fail to reject the null hypothesis of a random walk, we have to take the first difference

of our time series. In summary, our approach of analyzing a time series has now an

additional step. After removing seasonal and/or trend components from the time series,

we test if the reminder term is a random walk. If we reject this hypothesis, we can

model the reminder term with an appropriate ARMA model. If we cannot reject the null

hypothesis, we take the first difference of the reminder term and then fit an appropriate

ARMA model on the differenced reminder.

Note that this is just a brief introduction to the topic of testing for stationarity, which

should help you understand the basic ideas behind this approach. In particular, if we

have a time series that has a trend, we would use the above testing procedure also to

distinguish between a stationary time series with trend and a random walk with drift. For

more details and a brilliant walk-through of the Dickey-Fuller test I recommend Chapter

4 of Enders (2015). Keep in mind that we are testing the null hypothesis of having a

random walk, and not non-stationarity in general. Even if we reject the null hypothesis

of a random walk, the time series can still have other forms of non-stationarity.

4.2 Forecasting

4.2.1 Forecasting trend and seasonal components

One of the most common goals in time series econometrics is forecasting future values of

our data. For example, governments are interested in forecasting unemployment rates.

Companies want to know how larger their sales will be in the near future. Or you might

be interest in predicting the volatility of your portfolio.

The general idea behind forecasting is to quantify what value we expect to observe for

the next periods given all the information about the time series we have today. Assume

you have observed a time series from period 1 to T (today), i.e. we know {Yt}Tt=1. We

want to forecast the time series over the next h periods: what values can we expect for

135



Introduction to Time Series Econometrics v0.1

YT+1, YT+2, . . . , YT+h? In statistical terms, we compute the following expectations:

E[YT+1|FT ]

E[YT+2|FT ]

...

E[YT+h|FT ]

Let us focus first on E[YT+1|FT ]. Using the definition of a time series introduced in this

script we get:

E[YT+1|FT ] =E[TT+1 + ST+1 +XT+1|FT ]

=TT+1 + ST+1 + E[XT+1|FT ].

The reason that we can take out the trend and seasonal component is that they are

perfectly predictable, since they are only a function of time. Similarly, we can compute

the conditional expected value at longer horizons:

E[YT+h|FT ] =E[TT+h + ST+h +XT+h|FT ]

=TT+h + ST+h + E[XT+h|FT ].

Example 4.3: Forecasting a time series with a linear trend

Consider the following time series:

Yt = a+ b · t+ Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z .

We observe the time series up to time period T and are now interested in forecasting
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its value in T + 1, T + 2, . . . We obtain forecasts as follows:

E[YT+1|FT ] =E[a+ b · (T + 1) + ZT+1|FT ]

=a+ b · (T + 1) + E[ZT+1|FT ]

=a+ b · (T + 1) + E[ZT+1]

=a+ b · (T + 1)

where I used the fact that {Zt}Tt=1 is a collection of i.i.d. random variables and

hence E[ZT+1|FT ] = E[ZT+1]. Similarly, we can compute the forecast for longer

horizons:

E[YT+2|FT ] = a+ b · (T + 2)

E[YT+3|FT ] = a+ b · (T + 3)

E[YT+4|FT ] = a+ b · (T + 4)

E[YT+5|FT ] = a+ b · (T + 5)

...

Example 4.4: Forecasting a time series with a seasonal component

Consider the following time series:

Yt = a+ s1 · 1(t=1,3,5,... ) + s2 · 1(t=2,4,6,... ) + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z .

We observe the time series up to time period T = 100 and are now interested in
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forecasting its value in T + 1, T + 2, . . . We obtain forecasts as follows:

E[YT+1|FT ] =E[a+ s1 + Zt|FT ]

=a+ s1 + E[ZT+1|FT ]

=a+ s1 + E[ZT+1]

=a+ s1.

Since T = 100, in T + 1 = 101 we have that 1(t=1,3,5,... ) = 1 and 1(t=2,4,6,... ) = 0.

Similarly, we can compute the forecast for longer horizons:

E[YT+2|FT ] = a+ s2

E[YT+3|FT ] = a+ s1

E[YT+4|FT ] = a+ s2

E[YT+5|FT ] = a+ s1

...

4.2.2 Forecasting ARMA processes

The remaining challenge is to compute E[XT+1|FT ], . . . ,E[XT+h|FT ]. In the previous two

examples the remainder term was simply a white noise process, for which we have seen

that E[ZT+1|FT ] = 0. We next will see how we can predict the remainder term if it is an

ARMA(p,q) process.

Consider the simple AR(1) process:

Xt = c+ φXt−1 + Zt.

Assume we observe the time series up to time period T . The forecast for T + 1 is
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then:

E[XT+1|FT ] =E[c+ φXT + ZT+1|FT ]

=c+ φXT + E[ZT+1|FT ]

=c+ φXT + E[ZT+1]

=c+ φXT

where we used the fact that XT is observed at the time point we make the forecast, i.e.

we know its value and we can therefore take it out from the expectation. Now, let’s

forecast the value XT+2:

E[XT+2|FT ] =E[c+ φXT+1 + ZT+2|FT ]

=c+ φE[XT+1|FT ] + E[ZT+2|FT ]

=c+ φE[XT+1|FT ]

which shows that the forecast forXT+2 depends on our forecast forXT+1. Since we already

computed this forecast, we can insert its value and obtain the forecast for XT+2:

E[XT+2|FT ] =c+ φE[XT+1|FT ]

=c+ φ(c+ φXT )

=c+ φc+ φ2XT .

By following this iterative procedure, we can obtain forecast for any desired period. For

an AR(1), we have that the forecast for h periods in the future is:

E[XT+h|FT ] = c+ φc+ φ2c+ · · ·+ φh−1c+ φhXT .

For higher order AR processes we can apply the same procedure. For example, let’s
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consider an AR(2) process. The forecast for T + 1 is:

E[XT+1|FT ] =E[c+ φ1XT + φ1XT−1 + ZT+1|FT ]

=c+ φ1XT + φ1XT−1 + E[ZT+1|FT ]

=c+ φ1XT + φ1XT−1

For T + 2 the forecast is:

E[XT+2|FT ] =E[c+ φ1XT+1 + φ2XT + ZT+2|FT ]

=c+ φ1E[XT+1|FT ] + φ2XT + E[ZT+2|FT ]

=c+ φ1E[XT+1|FT ] + φ2XT

where we can plug-in the forecast E[XT+1|FT ] obtained before. For T + 3 the forecast

is:

E[XT+3|FT ] =E[c+ φ1XT+2 + φ1XT+1 + ZT+3|FT ]

=c+ φ1E[XT+2|FT ] + φ2E[XT+1|FT ] + E[ZT+1|FT ]

=c+ φ1E[XT+2|FT ] + φ2E[XT+1|FT ]

where we can now plug-in the forecast obtain previously for E[XT+1|FT ] and E[XT+2|FT ].

This iterative procedure can be continued for any horizon h. Moreover, you can apply

the same approach for any AR(p) process.

Let’s now consider instead a MA(1) process:

Xt = c+ θZt−1 + Zt.
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We start by computing the forecast for the next period:

E[XT+1|FT ] =E[c+ θZT + ZT+1|FT ]

=c+ θZT + E[ZT+1|FT ]

=c+ θZT + E[ZT+1]

=c+ θZT

where again we used the fact that ZT is known when we are making the forecast (time

T ). Next, we forecast the value of the time series for T + 2:

E[XT+2|FT ] =E[c+ θZT+1 + ZT+2|FT ]

=c+ θE[ZT+1|FT ] + E[ZT+2|FT ]

=c+ θE[ZT+1|FT ].

Recall that Zt are i.i.d. random variable and hence not dependent from past information.

We therefore have that E[ZT+1|FT ] = E[ZT+1] = 0 and the forecast is:

E[XT+2|FT ] = c.

In fact, for a MA(1) process we have that E[XT+h|FT ] = c for h > 1. Consider now a

MA(2):

Xt = c+ θ1Zt−1 + θ2Zt−2 + Zt.

Observing data up to time period T , we obtain forecasts for T + 1 as follows:

E[XT+1|FT ] =E[c+ θ1ZT + θ2ZT−1 + ZT+1|FT ]

=c+ θ1ZT + θ2ZT−1 + E[ZT+1|FT ]

=c+ θ1ZT + θ2ZT−1 + E[ZT+1]

=c+ θ1ZT + θ2ZT−1.
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The forecast for T + 2 is then:

E[XT+2|FT ] =E[c+ θ1ZT+1 + θ2ZT + ZT+2|FT ]

=c+ θ1E[ZT+1|FT ] + θ2ZT + E[ZT+2|FT ]

=c+ θ1E[ZT+1] + θ2ZT + E[ZT+2]

=c+ θ2ZT

and for T + 3 we have:

E[XT+3|FT ] =E[c+ θ1ZT+2 + θ2ZT+1 + ZT+3|FT ]

=c+ θ1E[ZT+2|FT ] + θ2E[ZT+1|FT ] + E[ZT+3|FT ]

=c+ θ1E[ZT+2] + θ2E[ZT+1] + E[ZT+3]

=c.

It is easy to show, that for a MA(2) process we have that E[XT+h|FT ] = c for h > 2.

In fact, this pattern generalizes to any moving average process: for a MA(q) process we

have that E[XT+h|FT ] = c for h > q.

This approach of obtaining forecast can be generalized to any type of ARMA(p,q). For

example, let’s consider an ARMA(1,1):

Xt = c+ φXt−1 + θZt−1 + Zt.

If we observe the process up to time period T , we obtain the forecast for T + 1 as
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follows:

E[XT+1|FT ] =E[c+ φXT + θZT + ZT+1|FT ]

=c+ φXT + θZT + E[ZT+1|FT ]

=c+ φXT + θZT + E[ZT+1]

=c+ φXT + θZT .

For T + 2 the forecast is:

E[XT+2|FT ] =E[c+ φXT+1 + θZT+1 + ZT+2|FT ]

=c+ φE[XT+1|FT ] + θE[ZT+1|FT ] + E[ZT+2|FT ]

=c+ φE[XT+1|FT ] + θE[ZT+1] + E[ZT+2]

=c+ φE[XT+1|FT ].

The forecast for T + 2 depends on the forecast of T + 1, which we computed before. We

can therefore simply plug-in the E[XT+1|FT ] in the forecast for T + 2:

E[XT+2|FT ] =c+ φE[XT+1|FT ]

=c+ φ(c+ φXT + θZT )

=c+ φc+ φ2XT + φθZT

and we can continue with this iterative procedure to obtain forecast for T + 3, T + 4,

T + 5, T + 6, . . .

In summary, we obtain forecasts for ARMA processes as follows:

1. Start with h = 1, i.e. compute the forecast for T + 1.

2. In the definition of the process, replace t with T + h.
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3. On the right-hand side of the equation, replace future observations with their fore-

casts, future innovations (the Z’s) with zero, and past innovations with the corre-

sponding value.

4. Repeat steps 2. to 3. for h = 2, 3, 4, . . .

Example 4.5: Forecasting an AR(1) process

Consider the following time series:

Yt =10 + 0.1 · t+Xt

Xt =0.5 + 0.5 ·Xt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] =

σ2
Z . We observe the time series up to time period T = 10: Y1 = 11.2, . . . , Y8 = 11.5,

Y9 = 11.8, Y10 = 12.2.

We are interested in forecasting the value the time series will attain in T + 1, T + 2,

. . .

First, we have to find the values of the reminder component. To do this, we simply

subtract the trend from the observations:

X1 = Y1 − (10 + 0.1 · 1) = 11.2− 10.1 = 1.1

...

X8 = Y8 − (10 + 0.1 · 8) = 11.5− 10.8 = 0.7

X9 = Y9 − (10 + 0.1 · 9) = 11.8− 10.9 = 0.9

X10 = Y10 − (10 + 0.1 · 10) = 12.2− 11 = 1.2
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We can then compute the forecast for T + 1:

E[Y11|F10] =E[10 + 0.1 · 11 +X11|F10]

=10 + 0.1 · 11 + E[X11|F10]

=11.1 + E[X11|F10].

We need to forecast the reminder term:

E[X11|F10] =E[0.5 + 0.5 ·X10 + Z11|F10]

=E[0.5 + 0.5 · 1.2 + Z11|F10]

=0.5 + 0.5 · 1.2 + E[Z11|F10]

=1.1 + E[Z11] = 1.1.

In summary, the forecast for Y11 is:

E[Y11|F10] =11.1 + 1.1 = 12.2

The same procedure can be used to obtain a forecast for Y12:

E[Y12|F10] =E[10 + 0.1 · 12 +X12|F10]

=11.2 + E[X12|F10].

and the forecast for X12 is:

E[X12|F10] =E[0.5 + 0.5 ·X11 + Z12|F10]

=0.5 + 0.5 · E[X12|F10] + E[Z12|F10]

=0.5 + 0.5 · 1.1 = 1.05

where we used the previously computed forecast for X11. In summary, the forecast
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for Y12 is:

E[Y12|F10] =11.2 + 1.05 = 12.25.

4.2.3 Long-run ARMA forecasts

We have just seen that the h period ahead forecast for an AR(1) process is:

E[XT+h|FT ] =c+ φc+ φ2c+ · · ·+ φh−1c+ φhXT

=c
1− φh

1− φ
+ φhXT

where I used the fact that the first part of the right-hand side is a geometric sequence.

Now, for a stationary AR(1) process we have that |φ| < 1. The long-run forecast, i.e.

h→∞, is1:

lim
h→∞

E[XT+h|FT ] = lim
h→∞

c
1− φh

1− φ
+ lim

h→∞
φhXT

=
c

1− φ

which is the expected value of an AR(1) process. In other words, as the forecasting

horizon increases, our “best guess” will be the unconditional expected value. This result

holds true for any stationary ARMA(p,q) process.

4.2.4 Obtaining values for the residuals

We have just seen that the T + 1 forecast for an ARMA(1,1) is:

E[XT+1|FT ] = c+ φXT + θZT

which therefore depends on ZT . However, we do not observe the white noise random

variables Zt. You can think of them as the residuals of a linear regression. For an

1Note that this notation is mathematically not exactly correct.
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ARMA(1,1), to obtain values for the white noise random variables we can proceed as

follows:

1. Set X0 = E[Xt] = c
1−φ and Z0 = 0.

2. Compute Z1 = X1 − c− φX0 − θZ0.

3. Repeat this recursive procedure for t = 2, . . . , T .

You can easily adapt this procedure to any ARMA(p,q) process. This is the most simple

approach to compute the unobserved residuals. While for this course it is enough that you

know this simple approach, note that in practice there are other methods to determine

the values of Zt. For example, statistical programming language such as R use a more

sophisticated version in which the residuals are treated as unobserved random variables

in a state-space model. In practice you will not compute the residuals by hand but rather

obtain the values directly form the appropriate functions in the programming language

you are using.

4.2.5 Forecasting ARMA processes in R

In practice, the steps illustrated previously are carried out by a computer program. In

R, for example, the package forecast provides a useful function to predict ARMA pro-

cesses:

forecast(model, h=5)

where model is an appropriate ARMA-object and h defines the number of periods to

forecast. For example, model can be the object returned by the function auto.arima or

arima. The function returns many information, which are all stored in a list: the element

that we are interested in is "mean" (see the following example).

Example 4.6: Forecasting the UK unemployment rate

Let’s consider again the UK unemployment rate. We have data up to the year 2016

and would like to forecast the unemployment rate for the next 20 years. We have

already concluded that the data is stationary: the plot did not show any trend or
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seasonal pattern, and we rejected the null hypothesis that the data is generated

by a random walk. We can therefore directly find the best ARMA model for this

data:

# First we have to find an appropriate model (we use the BIC):

model_unemp_rate <- auto.arima(unemp_rate , d=0, D=0,

seasonal=FALSE , ic = "bic")

summary(model_unemp_rate)

Based on the Bayes information criterion, we find that the best model is an AR(2)

with coefficientsa c = 0.82, φ̂1 = 1.01 and φ̂2 = −0.16. The forecasts for the next 20

periods (years) can then be obtained by running the following commands:

# We obtain forecasts with the function ’forecast ’

# from the package ’forecast ’:

# install.packages (" forecast ")

library(forecast)

model_unemp_rate_forecast <- forecast(model_unemp_rate , h = 20)

# The function returns many information , we just need the

# expected value:

unemp_rate_predicted <- model_unemp_rate_forecast$mean

aNote that the function returns the mean (expected value) and not the constant c. The constant
is c = E[Xt] · (1− φ1 − φ2).

We can then plot the observed data and the forecasts:

# Plot the forecasting results

plot(unemp_rate , xlim=c(1760, 2016+20), type=’l’, main=’’,

ylab=’Annual unemployment rate in %’)

grid()

lines(unemp_rate_predicted , col="red")

abline(h=mean(unemp_rate), lty=2)

The result is depicted in the following figure. The plot also shows the expected value

of the unemployment rate (dashed horizontal line). We can observe how the fore-

casted unemployment rate (red line) converges towards the unconditional expected

value as the forecasting horizon increases.
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Figure 4.2: Forecasts of the annual unemployment rate of the UK (in %)

4.2.6 Forecasting differenced time series

When we take the difference of our time series to remove trends, seasonal components,

or a random walk we have to slightly adapt the forecasting procedure. The main idea is

that we revert the difference operators that we applied to our time series.

For example, if we have a time series with a linear trend:

Yt = a+ b · t+ Zt

and we decide to take the first difference to remove the trend:

∆Yt = b · t+ ∆Zt

we can obtain forecasts for YT+1 as follows:

E[YT+1|FT ] =E[YT + ∆YT+1|FT ]

=YT + E[∆YT+1|FT ]
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and similarly, the forecast for T + 2 is:

E[YT+2|FT ] =E[YT + ∆YT+1 + ∆YT+2|FT ]

=YT + E[∆YT+1|FT ] + E[∆YT+2|FT ].

If we have instead a time series with a seasonal component:

Yt =St + Zt

St =St−2

and we decide to take the seasonal difference to remove the seasonality:

∆2Yt = ∆2Zt

We can obtain forecasts for YT+1 as follows:

E[YT+1|FT ] =E[YT−1 + ∆2YT+1|FT ]

=YT−1 + E[∆2YT+1|FT ]

since YT−1 + ∆2YT+1 = YT−1 + YT+1 − YT−1 = YT+1.

In other words, we can work with the differenced time series as usual: find an appropriate

ARMA model and then produce forecasts. Once we have forecasts for the differenced time

series, we can revert the difference operator and obtain forecast for the original data.

Example 4.7: Forecasting with a random walk

Let’s assume that we observe data for the following time series:

Yt =Xt

Xt =Xt−1 + 0.5Zt−1 + Zt
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which is a time series without trend or seasonal component, and a reminder com-

ponent that is not stationary. We decide to take the first difference to remove the

random walk:

∆Yt =∆Xt

∆Xt =0.5Zt−1 + Zt.

We observe the time series up to time period T and the last observation is YT = 5.2

and the last innovation is ZT = 0.5. We start by forecasting the differenced time

series, for which we have E[∆YT+1|FT ] = E[∆XT+1|FT ] and therefore:

E[∆XT+1|FT ] =E[0.5ZT + ZT+1|FT ]

=E[0.5 · 0.5 + ZT+1|FT ]

=0.5 · 0.5 + E[ZT+1|FT ]

=0.25 + E[ZT+1] = 0.25.

Now we can compute the forecast for YT+1 by reverting the difference operator:

E[YT+1|FT ] =E[YT + ∆YT+1|FT ]

=E[5.2 + ∆YT+1|FT ]

=5.2 + E[∆YT+1|FT ]

=5.2 + 0.25 = 5.45.

4.3 From raw data to forecasts

We have now seen all elements needed for analyzing a time series. The entire procedure

is summarized in the diagram depicted in Figure 4.3. In this last section, we will apply

all learned concepts to the quarterly log earn of Johnson & Johnson. We consider the

data up to the end of 1978 and predict the log earnings for the next two years.
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Time series Yt

Plot the time series data (Section 1.5):
Trend: linear, quadratic, ... (determine n)

Seasonality: weekly, quarterly, ... (determine s)

Estimate the trend and seasonal
components (Section 1.5.2)

Remove the trend and seasonal
components (Section 1.5.3)

Analyze the remainder term: is it stationary?
Test for the presence of a unit-root (Section 4.1).

Yes

No

Take first difference

Fit ARMA model:
find optimal p and q in terms of AIC or BIC

Forecast remainder term with the ARMA model

Forecast Yt

Figure 4.3: Diagram of the time series analysis procedure
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Figure 4.4: Quarterly log earnings of Johnson & Johnson from 1960 to 1978

The first step of time series analysis is the visual inspection of the data to detect trend

and/or seasonal patterns. This can be achieved by running the following commands in

R:

# get the log earnings of Johnson and Johnson up to

# the end of 1978

jj_log_earnings <- window(log(jj), end=c(1978,4))

# plot the data

plot(jj_log_earnings , type=’o’, main=’’,

ylab=’Quarterly log earnings per share’)

# add grid lines for better readability

grid()

Figure 4.4 depicts the time series of interest. As we have seen in the previous chapters,

the log earnings clearly exhibit a seasonal pattern and a positive linear trend.

In the second step, we can decide how we want to deal with the trend and seasonal

components. For this example, we will estimate the relevant parameters (see Section

1.5.2). More precisely, we assume that the time series has the form:

Yt =a0 + a1 · t+ s1 · 1(t=1960.00,1961.00,... ) + s2 · 1(t=1960.25,1961.25,... )

+ s3 · 1(t=1960.50,1961.50,... ) + s4 · 1(t=1960.75,1961.75,... ) +Xt
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where t = 1960.00, 1960.25, 1960.50, 1960.75, . . . , 1978.75. We can estimate the relevant

parameters in R by running the following code:

# Create a data frame that allows us to estimate trend and

# seasonality:

trendseason_df <-

data.frame(earn=jj_log_earnings ,

s1= rep(c(1,0,0,0), length(jj_log_earnings )/4),

s2= rep(c(0,1,0,0), length(jj_log_earnings )/4),

s3= rep(c(0,0,1,0), length(jj_log_earnings )/4),

s4= rep(c(0,0,0,1), length(jj_log_earnings )/4),

tt = time(jj_log_earnings ))

# Estimate the parameters: run without intercept

trendseason_reg <- lm(earn ~ tt + s1 + s2 + s3 + s4 -1,

data = trendseason_df)

The parameter of interest are then obtain as follows:

# Define a0:

a0 <- mean(coef(trendseason_reg)[c("s1", "s2", "s3", "s4")])

# Get a1:

a1 <- coef(trendseason_reg)["tt"]

# Define the seasonal components:

season_components <-

coef(trendseason_reg)[c("s1", "s2", "s3", "s4")] - a0

We obtain â0 = −328.29, â1 = 0.17, ŝ1 = 0.011, ŝ2 = 0.039, ŝ3 = 0.109 and ŝ4 = −0.159.

Using this estimates we can obtain the reminder term as follows:

Xt =Yt − â0 − â1 · t− ŝ1 · 1(t=1960.00,1961.00,... ) − ŝ2 · 1(t=1960.25,1961.25,... )

− ŝ3 · 1(t=1960.50,1961.50,... ) − ŝ4 · 1(t=1960.75,1961.75,... )

which in R can be obtained with the following code:

# Get the residual component:

x <- jj_log_earnings - fitted(trendseason_reg)
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In the third step, we have to test the null hypothesis that the remainder term is a random

walk. More precisely, we have to estimate the following regression:

∆Xt = c+ γXt−1 +

p−1∑
j=1

ψj∆Xt−j + Zt

where we determine the order p with the BIC. In R we run the augmented Dickey-Fuller

test using the function ur.df():

# Check the reminder:

test_x <- ur.df(x, type = "drift", selectlags = "BIC")

summary(test_x)

The parameter of interest is γ̂ = −0.49 and its t-statistic is tγ̂ = −3.75. Since we have

76 observations we use the critical values for a sample size of 100 (see Table 4.1). Since

tγ̂ < −3.51 we can reject the null hypothesis of a random walk at the 1% significance

level.

Since we concluded that the reminder term is stationary, we can procede with the fourth

step and find an appropriate ARMA model. We use again the BIC criterion to find the

optimal p and q:

# Find best model for the reminder term:

reminder_model <- auto.arima(x, d=0, D=0,

seasonal=FALSE , ic = "bic")

We obtain the following ARMA(2,1) model for the remainder term:

Xt = −0.3999Xt−1 + 0.5452Xt−2 + 0.7931Zt−1 + Zt
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In summary, we have estimated the following model for our time series:

Yt =− 328.29 + 0.17 · t+ 0.011 · 1(t=1960.00,1961.00,... ) + 0.039 · 1(t=1960.25,1961.25,... )

+ 0.109 · 1(t=1960.50,1961.50,... ) − 0.159 · 1(t=1960.75,1961.75,... ) +Xt

Xt =− 0.3999Xt−1 + 0.5452Xt−2 + 0.7931Zt−1 + Zt

which we can now use to forecast the time series. For example, the forecast for the log

earnings for the first quarter of 1979 can be compute as:

E[Y1979.00|F1978.75] = −328.29 + 0.17 · 1979.00 + 0.011 + E[X1979.00|F1978.75]

The same procedure can then be used for longer forecasting horizons. In R we can

compute the forecasts for the trend and seasonal components as follows:

# Forecasts of the seasonal pattern: the forecasts for the

# seasonal component are just the seasonal coefficients

# estimated in the regression:

season_predicted <- ts(rep(season_components , 2),

start = c(1979, 1), frequency = 4)

# Forecast of the trend: the trend can be forecasted by

# simply using the estimated parameters on future values

# of the time index:

tt_future <- seq(1979, 1980.75, by = 0.25)

trend_predicted <- ts(a0 + a1*tt_future ,

start = c(1979, 1), frequency = 4 )

For the remainder term we can instead use the function forecast():

# We obtain forecasts with the function ’forecast ’:

reminder_model_forecast <- forecast(reminder_model , h = 8)

# The function returns many information , we just need the expected

# value of the reminder term:

x_predicted <- reminder_model_forecast$mean
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Finally, we obtain the forecasts for the log earnings by combining the forecast for the

trend, the seasonal component and the remainder term:

# Combine all forecasts:

jj_predicted <- trend_predicted + season_predicted + x_predicted

The forecast along with the true data is represented in Figure 4.5, which can be obtained

by running the following commands:

# Plot the forecasts against the original time series

plot(log(jj),type=’o’, main=’’, xlim = c(1960, 1981),

ylim=c(-1, 3), ylab = "Quarterly log earnings per share")

lines(jj_predicted , col="red", type=’o’)

grid()

Figure 4.5: Forecasted quarterly log earnings of Johnson & Johnson
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4.4 Exercises

Exercise 4.1. Consider the following time series:

Yt =5− 0.2 · t+Xt

Xt =− 0.5 ·Xt−1 + Zt

where t = 1, 2, 3, . . . and {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0

and Var[Zt] = σ2
Z. We observe the time series up to time period T = 10: Y1 = 4.7, . . . ,

Y8 = 3.55, Y9 = 2.90, Y10 = 3.20.

(i) What type of process is the time series of Xt? Is it stationary?

(ii) Find the values of X8, X9, and X10.

(iii) Forecast Y11 and Y12.

Exercise 4.2. Consider the following time series:

Yt =5− 0.2 · t+ 0.01 · t2 +Xt

Xt =− 0.5 · Zt−1 + 0.2 · Zt−2 + Zt

where t = 1, 2, 3, . . . and {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0

and Var[Zt] = σ2
Z. We observe the time series up to time period T = 10: Y1 = 4.75, . . . ,

Y8 = 4.15, Y9 = 3.95, Y10 = 4.1. The last two residuals are Z9 = 1 and Z10 = −0.5.

(i) What type of process is the time series of Xt? Is it stationary?

(ii) Forecast Y11 and Y12.

Exercise 4.3. Consider the following time series:

Yt =Xt

Xt =0.2 + 0.5 ·Xt−1 + 0.4Xt−2 + Zt
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where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z.

We observe data up to T = 100. The last three observations are Y98 = 3.5, Y99 = 2.1,

Y100 = 2.6.

(i) Forecast Y101 and Y102.

(ii) Forecast Y1000 (provide an approximation).

Exercise 4.4. Consider the following time series:

Yt = St +Xt

St = St−2

Xt = Xt−1 + Zt

where {Zt}Tt=1 is a collection of i.i.d. random variables with E[Zt] = 0 and Var[Zt] = σ2
Z.

We observe data up to T = 100. The last three observations are Y98 = −18.9, Y99 = 0.4,

Y100 = −19.2. And the last three innovations are Z98 = 0.3, Z99 = −0.7, Z100 = 0.4.

(i) Apply the appropriate difference operator to remove the seasonal component.

(ii) Forecast Y101.

(iii) Forecast Y102
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